A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting outcome after aneurysmal subarachnoid hemorrhage by exploitation of signal complexity: a prospective two-center cohort study. | LitMetric

Background: Signal complexity (i.e. entropy) describes the level of order within a system. Low physiological signal complexity predicts unfavorable outcome in a variety of diseases and is assumed to reflect increased rigidity of the cardio/cerebrovascular system leading to (or reflecting) autoregulation failure. Aneurysmal subarachnoid hemorrhage (aSAH) is followed by a cascade of complex systemic and cerebral sequelae. In aSAH, the value of entropy has not been established yet.

Methods: aSAH patients from 2 prospective cohorts (Zurich-derivation cohort, Aachen-validation cohort) were included. Multiscale Entropy (MSE) was estimated for arterial blood pressure, intracranial pressure, heart rate, and their derivatives, and compared to dichotomized (1-4 vs. 5-8) or ordinal outcome (GOSE-extended Glasgow Outcome Scale) at 12 months using uni- and multivariable (adjusted for age, World Federation of Neurological Surgeons grade, modified Fisher (mFisher) grade, delayed cerebral infarction), and ordinal methods (proportional odds logistic regression/sliding dichotomy). The multivariable logistic regression models were validated internally using bootstrapping and externally by assessing the calibration and discrimination.

Results: A total of 330 (derivation: 241, validation: 89) aSAH patients were analyzed. Decreasing MSE was associated with a higher likelihood of unfavorable outcome independent of covariates and analysis method. The multivariable adjusted logistic regression models were well calibrated and only showed a slight decrease in discrimination when assessed in the validation cohort. The ordinal analysis revealed its effect to be linear. MSE remained valid when adjusting the outcome definition against the initial severity.

Conclusions: MSE metrics and thereby complexity of physiological signals are independent, internally and externally valid predictors of 12-month outcome. Incorporating high-frequency physiological data as part of clinical outcome prediction may enable precise, individualized outcome prediction. The results of this study warrant further investigation into the cause of the resulting complexity as well as its association to important and potentially preventable complications including vasospasm and delayed cerebral ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092006PMC
http://dx.doi.org/10.1186/s13054-024-04939-7DOI Listing

Publication Analysis

Top Keywords

signal complexity
12
aneurysmal subarachnoid
8
subarachnoid hemorrhage
8
outcome
8
unfavorable outcome
8
asah patients
8
multivariable adjusted
8
delayed cerebral
8
logistic regression
8
regression models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!