PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility.

J Exp Clin Cancer Res

State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.

Published: May 2024

Background: Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear.

Methods: The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines.

Results: PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells.

Conclusion: This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094950PMC
http://dx.doi.org/10.1186/s13046-024-03064-1DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
pax6
13
chromatin accessibility
12
nepc
10
lineage plasticity
8
neural transcription
8
transcription factor
8
factor pax6
8
expression pax6
8
pax6 nepc
8

Similar Publications

Disseminated intravascular coagulation (DIC) is a hematological disorder characterized by the abnormal activation of the coagulation system, which leads to widespread clotting and subsequent consumption coagulopathy. DIC is often associated with the progression of prostate cancer and can be a life-threatening condition. In this case report, we present a patient with recurrent DIC in the setting of advanced prostate cancer.

View Article and Find Full Text PDF

Individuals with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) have a high risk of developing other malignancies (OMs). The development of OMs may be associated with the advanced age of CLL/SLL patients, presence of a tumor-promoting microenvironment, immune alterations inherent to CLL/SLL, or chemotherapy. Importantly, the occurrence of OMs following frontline fludarabine, cyclophosphamide and rituximab (FCR) treatment is associated with a reduction in the overall survival (OS).

View Article and Find Full Text PDF

Prostate cancer (PC) progresses from benign epithelium through pre-malignant lesions, localized tumors, metastatic dissemination, and castration-resistant stages, with some cases exhibiting phenotype plasticity under therapeutic pressure. However, high-resolution insights into how cell phenotypes evolve across successive stages of PC remain limited. Here, we present the Prostate Cancer Cell Atlas (PCCAT) by integrating ∼710,000 single cells from 197 human samples covering a spectrum of tumor stages.

View Article and Find Full Text PDF

Unlabelled: Inadequate response to androgen deprivation therapy (ADT) frequently arises in prostate cancer, driven by cellular mechanisms that remain poorly understood. Here, we integrated single-cell RNA sequencing, single-cell multiomics, and spatial transcriptomics to define the transcriptional, epigenetic, and spatial basis of cell identity and castration response in the mouse prostate. Leveraging these data along with a meta-analysis of human prostates and prostate cancer, we identified cellular orthologs and key determinants of ADT response and resistance.

View Article and Find Full Text PDF

Primary small cell neuroendocrine carcinoma of the prostate is extremely rare, highly aggressive, and has a very poor prognosis, with an overall survival typically not exceeding one year. Standard treatment is generally based on the regimen for small cell lung cancer (SCLC), with guidelines recommending etoposide combined with cisplatin (EP regimen) as the first-line treatment. However, their therapeutic effects are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!