Effect of cytoplasmic fragmentation on embryo development, quality, and pregnancy outcome: a systematic review of the literature.

Reprod Biol Endocrinol

Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Medical Center, The Robert Larner College of Medicine at the University of Vermont, Burlington, VT, 05405, USA.

Published: May 2024

AI Article Synopsis

  • Cytoplasmic fragmentation is a common phenomenon in human embryo development, but its definition and implications are not standardized in research.
  • Factors like culture conditions, gamete quality, and abnormal cell division are thought to contribute to this fragmentation, which can negatively impact the embryo's developmental potential by reducing cytoplasmic volume and essential organelles.
  • The relationship between the extent of fragmentation and successful embryo implantation is complex and debated, highlighting both the challenges in studying fragmentation and the ongoing research into its effects on embryo function and pregnancy outcomes.

Article Abstract

The role of cytoplasmic fragmentation in human embryo development and reproductive potential is widely recognized, albeit without standard definition nor agreed upon implication. While fragmentation is best understood to be a natural process across species, the origin of fragmentation remains incompletely understood and likely multifactorial. Several factors including embryo culture condition, gamete quality, aneuploidy, and abnormal cytokinesis seem to have important role in the etiology of cytoplasmic fragmentation. Fragmentation reduces the volume of cytoplasm and depletes embryo of essential organelles and regulatory proteins, compromising the developmental potential of the embryo. While it has been shown that degree of fragmentation and embryo implantation potential are inversely proportional, the degree, pattern, and distribution of fragmentation as it relates to pregnancy outcome is debated in the literature. This review highlights some of the challenges in analysis of fragmentation, while revealing trends in our evolving knowledge of how fragmentation may relate to functional development of the human embryos, implantation, and pregnancy outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092204PMC
http://dx.doi.org/10.1186/s12958-024-01217-7DOI Listing

Publication Analysis

Top Keywords

cytoplasmic fragmentation
12
pregnancy outcome
12
fragmentation
9
fragmentation embryo
8
embryo development
8
embryo
6
development quality
4
quality pregnancy
4
outcome systematic
4
systematic review
4

Similar Publications

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Transgenic plants can express double-stranded RNA that silences mRNAs in fungal pathogens, but how this RNA crosses cell membranes during infection is unclear.
  • A new protocol allowed researchers to isolate RNA from the leaf surface, revealing a unique pattern distinct from intercellular RNA, suggesting it might be secreted directly rather than through stomata.
  • The isolated surface RNAs, primarily from Arabidopsis and including various RNA types, may play a vital role in establishing microbial communities on leaf surfaces.
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial fission and mitophagy are crucial for understanding myocardial ischemia-reperfusion (IR) injury, but their regulatory mechanisms are not well understood.
  • Elevated Nr4a1 levels after myocardial IR injury correlate with worse cardiac function, increased cell death, inflammation, and endothelial issues, while Nr4a1-knockout mice show protection and better mitochondrial health.
  • Targeting Nr4a1 to balance mitochondrial fission and mitophagy could provide new therapeutic options to improve heart health during ischemic conditions.
View Article and Find Full Text PDF

Loss of Mfn1 but not Mfn2 enhances adipogenesis.

PLoS One

December 2024

Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.

Objective: A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells.

Methods: We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA.

View Article and Find Full Text PDF

Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences.

Appl Microbiol Biotechnol

December 2024

Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan.

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!