The NTE domain of PTENα/β promotes cancer progression by interacting with WDR5 via its SSSRRSS motif.

Cell Death Dis

Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China.

Published: May 2024

PTENα/β, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive. In this study, we determined the first crystal structure of PTENα-NTE in complex with WDR5, which reveals that PTENα utilizes a unique binding motif of a sequence SSSRRSS found in the NTE domain of PTENα/β to specifically bind to the WIN site of WDR5. Disruption of this interaction significantly impedes cell proliferation and tumor growth, highlighting the potential of the WIN site inhibitors of WDR5 as a way of therapeutic intervention of the PTENα/β associated cancers. These findings not only shed light on the important role of the PTENα/β-WDR5 interaction in carcinogenesis, but also present a promising avenue for developing cancer treatments that target this pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094138PMC
http://dx.doi.org/10.1038/s41419-024-06714-6DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
nte domain
8
domain ptenα/β
8
interacting wdr5
8
win site
8
wdr5
5
ptenα/β
4
ptenα/β promotes
4
promotes cancer
4
cancer progression
4

Similar Publications

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Purpose: Over the past 15 years, the landscape of early phase clinical trials (EPCTs) has undergone a remarkable expansion in both quantity and intricacy. The proliferation of sites, trials, sponsors, and contract research organizations has surged exponentially, marking a significant shift in research conduct. However, EPCT operations suffer from numerous inefficiencies, such as cumbersome start-up processes, which are particularly critical when drug safety and the recommended phase II dose need to be established in a timely manner.

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!