Industrialization and the ever-increasing world population have diminished high-quality water resources for sustainable agriculture. It is imperative to effectively treat industrial effluent to render the treated water available for crop cultivation. This study aimed to assess the effectiveness of textile effluent treated with Trametes pubescens MB 89 in supporting maize cultivation. The fungal treatment reduced the amounts of Co, Pb and As in the textile effluent. The biological oxygen demand, total dissolved solids and total suspended solids were within the permissible limits in the treated effluent. The data indicated that the irrigation of maize with fungal-treated textile effluent improved the growth parameters of the plant including root, shoot length, leaf area and chlorophyll content. Moreover, better antioxidant activity, total phenol content and protein content in roots, stems and leaves of maize plants were obtained. Photosynthetic parameters (potential quantum yield, electron transport rate and fluorescence yield of non-photochemical losses other than heat) were also improved in the plants irrigated with treated effluent as compared to the control groups. In conclusion, the treatment of textile effluent with the immobilized T. pubescens presents a sustainable solution to minimize chemical pollution and effectively utilize water resources.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33673-4DOI Listing

Publication Analysis

Top Keywords

textile effluent
20
effluent
8
trametes pubescens
8
water resources
8
treated effluent
8
assessment textile
4
effluent treatment
4
treatment immobilized
4
immobilized trametes
4
pubescens plant
4

Similar Publications

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

The extensive use of azo dyes in textile and pharmaceutical industries pose significant environmental and health risks. This problem requires to be tackled forthwith through a cheap, environmentally friendly and viable approach to mitigate water pollution. In this context, the green synthesis method was used for synthesis of ZnO NPs.

View Article and Find Full Text PDF

Evaluating value-added biochemical and biodiesel production from Chlorococcum humicolo algal biomass in phycoremediation of textile dye effluents.

Bioresour Technol

December 2024

Department of Biotechnology, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600 119, Tamil Nadu, India.

This study investigates the potentials of Chlorococcum humicolo algal biomass for the extraction of valuable biochemical and biodiesel production, with focus on the phycoremediation of textile dye effluents. The alga was cultivated in three media: CFTRI medium, combined dye effluent, and dye bath effluent in the laboratory. The highest cell count (254 × 10 cells/ml) and lowest oil content (16.

View Article and Find Full Text PDF

The aim of the present research was the efficient degradation of industrial textile wastewater dyes using a very active cloned laccase enzyme. For this purpose, potent laccase-producing bacteria were isolated from soil samples collected from wastewater-replenished textile sites in Punjab, Pakistan. The laccase gene from locally isolated strain LI-81, identified as , was cloned into vector pET21a, which was further transformed into BL21 codon plus.

View Article and Find Full Text PDF

Graphene oxide functionalized with L-asparagine applied to crystal violet dye removal from water and wastewater.

Environ Sci Pollut Res Int

December 2024

Facultad de Ciencias Exactas y Naturales, Área de Química, Universidad Nacional de Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.

The efficiency of graphene oxide functionalized with L-asparagine (GO@L-Asn) as adsorbent for crystal violet (CV) dye removal from water and wastewater was investigated. The surface and textural properties of this new nanomaterial were characterized by pH at point of zero charge, Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmet-Teller technique. The main experimental variables involved in dye adsorption process were evaluated and optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!