AI Article Synopsis

  • B-cell depletion, particularly with rituximab, is effective for relapsing-remitting multiple sclerosis (RRMS) but is linked to a higher risk of infections compared to other disease-modifying therapies (DMTs).
  • A study analyzed data from the Swedish MS registry over nearly a decade, involving thousands of RRMS patients, to understand how previous treatments and duration affect infection risk.
  • Results showed that patients on rituximab had significantly higher rates of both inpatient and outpatient infections, emphasizing the need for safety strategies even for those with a shorter disease history or no previous treatment.

Article Abstract

Background: B-cell depletion displays striking effectiveness in relapsing-remitting multiple sclerosis (RRMS), but is also associated with increased infection risk. To what degree previous treatment history, disease-modifying therapy (DMT) switching pattern and time on treatment modulate this risk is unknown. The objective here was to evaluate previous DMT use and treatment duration as predictors of infection risk with B-cell depletion.

Methods: We conducted a nationwide RRMS cohort study leveraging data from the Swedish MS registry and national demographic and health registries recording all outpatient-treated and inpatient-treated infections and antibiotics prescriptions from 1 January 2012 to 30 June 2021. The risk of infection during treatment was compared by DMT, treatment duration, number and type of prior treatment and adjusted for a number of covariates.

Results: Among 4694 patients with RRMS on B-cell depletion (rituximab), 6049 on other DMTs and 20 308 age-sex matched population controls, we found higher incidence rates of inpatient-treated infections with DMTs other than rituximab used in first line (10.4; 95% CI 8.1 to 12.9, per 1000 person-years), being further increased with rituximab (22.7; 95% CI 18.5 to 27.5), compared with population controls (6.6; 95% CI 6.0 to 7.2). Similar patterns were seen for outpatient infections and antibiotics prescriptions. Infection rates on rituximab did not vary between first versus later line treatment, type of DMT before switch or exposure time.

Conclusion: These findings underscore an important safety concern with B-cell depletion in RRMS, being evident also in individuals with shorter disease duration and no previous DMT exposure, in turn motivating the application of risk mitigation strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671883PMC
http://dx.doi.org/10.1136/jnnp-2023-333206DOI Listing

Publication Analysis

Top Keywords

b-cell depletion
16
treatment duration
12
infection risk
12
treatment
9
previous treatment
8
treatment history
8
relapsing-remitting multiple
8
multiple sclerosis
8
cohort study
8
previous dmt
8

Similar Publications

Autophagy activation within inflammatory microenvironment improved the therapeutic effect of MSC-Derived extracellular Vesicle in SLE.

J Adv Res

January 2025

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University. Guangzhou 510120, China. Electronic address:

Introduction: Developing strategies to improve the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in autoimmune diseases have garnered increased attention.

Objectives: To evaluate whether rapamycin-induced autophagy within the systemic lupus erythematosus (SLE) inflammatory microenvironment (Rapa-SLE) augments the therapeutic effects of MSC-derived EVs in SLE.

Methods: The therapeutic potential of the resulting EVs (Rapa-SLE-EV) was assessed in MRL/lpr mice.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) contributes to ~1.5% of human cancers, including lymphomas, gastric and nasopharyngeal carcinomas. In most of these, nearly 80 viral lytic genes are silenced by incompletely understood epigenetic mechanisms, precluding use of antiviral agents such as ganciclovir to treat the 200,000 EBV-associated cancers/year.

View Article and Find Full Text PDF

CD19-CAR T-cell therapy induces deep tissue depletion of B cells.

Ann Rheum Dis

January 2025

Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany, Erlangen, Germany. Electronic address:

Objectives: CD19-targeting chimeric antigen receptor (CAR) T-cell therapy can induce long-term drug-free remission in patients with autoimmune diseases (AIDs). The efficacy of CD19-CAR T-cell therapy is presumably based on deep tissue depletion of B cells; however, such effect has not been proven in humans in vivo.

Methods: Sequential ultrasound-guided inguinal lymph node biopsies were performed at baseline and after CD19-CAR T-cell therapy in patients with AIDs.

View Article and Find Full Text PDF

Background: Babesiosis poses significant risks of adverse outcomes in individuals with immunocompromising conditions (IC) and asplenia/hyposplenia (AH). This study compares clinical outcomes between these vulnerable groups and immunocompetent patients.

Methods: A multicenter retrospective cohort study included adult patients with laboratory-confirmed babesiosis from 2009 to 2023.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!