A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Common alterations in parallel metabolomic profiling of serum and spinal cord and mechanistic studies on neuropathic pain following PPARα administration. | LitMetric

Common alterations in parallel metabolomic profiling of serum and spinal cord and mechanistic studies on neuropathic pain following PPARα administration.

Neuropharmacology

Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China. Electronic address:

Published: August 2024

Neuropathic pain (NP) is usually treated with analgesics and symptomatic therapy with poor efficacy and numerous side effects, highlighting the urgent need for effective treatment strategies. Recent studies have reported an important role for peroxisome proliferator-activated receptor alpha (PPARα) in regulating metabolism as well as inflammatory responses. Through pain behavioral assessment, we found that activation of PPARα prevented chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia. In addition, PPARα ameliorated inflammatory cell infiltration at the injury site and decreased microglial activation, NOD-like receptor protein 3 (NLRP3) inflammasome production, and spinal dendritic spine density, as well as improved serum and spinal cord metabolic levels in mice. Administration of PPARα antagonists eliminates the analgesic effect of PPARα agonists. PPARα relieves NP by inhibiting neuroinflammation and functional synaptic plasticity as well as modulating metabolic mechanisms, suggesting that PPARα may be a potential molecular target for NP alleviation. However, the effects of PPARα on neuroinflammation and synaptic plasticity should be further explored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2024.109988DOI Listing

Publication Analysis

Top Keywords

pparα
9
serum spinal
8
spinal cord
8
neuropathic pain
8
synaptic plasticity
8
common alterations
4
alterations parallel
4
parallel metabolomic
4
metabolomic profiling
4
profiling serum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!