Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2024.04.018DOI Listing

Publication Analysis

Top Keywords

tuft cells
16
type immune
12
tuft cell
8
gut lumen
8
helminth infection
8
immune response
8
effector function
8
tuft
6
cells
6
cell acetylcholine
4

Similar Publications

Background: The failure of amyloid plaque-reducing drugs to reverse cognitive decline in Alzheimer's disease (AD) has suggested that treatments might be more effective in early or prodromal stages of the disease. However, the progression of synaptic and circuit changes associated with Aβ overexpression, particularly at very early ages, have not been well-characterized. Indeed, evidence from both human and animal studies indicates that brain structure and function might be altered months to years before plaques can be detected.

View Article and Find Full Text PDF

Loss of Mist1 alters the characteristics of Paneth cells and impacts the function of intestinal stem cells in physiological conditions and after radiation injury.

J Pathol

January 2025

Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, PR China.

Intestinal stem cells (ISCs) and Paneth cells (PCs) reside at the bottom of the crypts of Lieberkühn in the small intestine. Recent studies have shown that the transcription factor Mist1, also named BHLHA15, plays an important role in the maturation of PCs. Since there is an intimate interaction between PCs and ISCs, we speculated that the loss of Mist1 could impact these two neighboring cell types.

View Article and Find Full Text PDF

The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches.

View Article and Find Full Text PDF

Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior.

View Article and Find Full Text PDF

Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer.

Dev Cell

December 2024

Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA. Electronic address:

Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!