The freeze-thaw cycle exacerbates the ecotoxicity of polystyrene nanoplastics to Secale cereale L. seedlings.

Plant Physiol Biochem

Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), China; Jilin Provincial Key Laboratory of Water Resources and Environment, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China.

Published: June 2024

In the context of global climate change, recurrent freeze-thaw cycles (FTC) and concurrent exposure to polystyrene nanoplastics (PSNPs) directly impact crop growth and indirectly affect resilience to abiotic stress. In January 2023, experiments at the Environmental Biology Laboratory, Jilin University, Changchun, China, exposed rye seedlings to 100 nm PSNPs at concentrations of 0, 10, 50, and 100 mg/L for seven days, followed by three FTC. Scanning electron microscopy (SEM) demonstrated that PSNPs migrated from the roots to the leaves, with FTC significantly exacerbating their accumulation within plant tissues. Transmission electron microscopy (TEM) observations showed that FTC disrupted normal cell division, and combined stress from NPs damaged plant organs, particularly chloroplasts, thereby substantially inhibiting photosynthesis. FTC delayed plant phenological stages. Under combined stress, malondialdehyde (MDA) accumulation in plant tissues increased by 15.6%, while hydrogen peroxide (HO) content decreased. Simultaneously, the activities of peroxidase (POD) and catalase (CAT) increased by 34.2% and 38.6%, respectively. Molecular docking unveiled that PSNPs could bind to the active center of POD/CAT through hydrogen bonding or hydrophobic interactions. The Integrated Biomarker Response (IBR) index highlighted FTC as a crucial determinant for pronounced effects. Moreover, an apparent dose-dependent effect was observed, with antioxidant enzyme activities in rye seedlings induced by low pollutant concentrations and inhibited by high concentrations. These results indicate that FTC and PSNPs can disrupt plant membrane systems and cause severe oxidative damage. Overall, this study provides compelling scientific evidence of the risks associated with NPs exposure in plants subjected to abiotic stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108716DOI Listing

Publication Analysis

Top Keywords

polystyrene nanoplastics
8
abiotic stress
8
rye seedlings
8
electron microscopy
8
accumulation plant
8
plant tissues
8
combined stress
8
ftc
7
psnps
5
plant
5

Similar Publications

Nano-plastics (NPs) and heavy metals have attracted growing scientific attention because of both pollutants' wide distribution and ecotoxicity. However, the long-term combined toxicity of NPs and mercury (Hg) on planktonic copepods, a crucial presence in marine environments, is unknown. Here, our study aimed to investigate the multigenerational phenotypic responses of the planktonic copepod Pseudodiaptomus annandalei to polystyrene NPs (about 50 nm) and Hg (alone or combined) at environmentally realistic concentrations (23 μg/L for NPs and 1 μg/L for Hg), and the underlying molecular mechanisms were explored.

View Article and Find Full Text PDF

Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction.

J Hazard Mater

January 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.

The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems.

View Article and Find Full Text PDF

The increasing prevalence of nanoplastics (NPs) in the environment, particularly polystyrene (PS) nanoparticles, raises concerns regarding their potential impact on human and animal health. Given their small size, NPs can cross biological barriers and accumulate in organs, including those critical for immune functions. This study investigates the effects of short-term oral exposure to 100 and 500 nm PS NPs on the adaptive immune responses during viral infections in vivo, using vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV) as models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!