AI Article Synopsis

  • The study focuses on detecting small plastic particles in various environmental water samples using Raman spectroscopy, which is a common analysis technique.
  • It investigates six types of plastic particles spiked into different water matrices, including artificial and natural waters from the North Sea and major rivers.
  • The research highlights that detection limits for Raman spectroscopy are affected by factors like the properties of the plastic particles, the composition of the water, and the experimental setup used.

Article Abstract

Detection of small plastic particles in environmental water samples has been a topic of increasing interest in recent years. A multitude of techniques, such as variants of Raman spectroscopy, have been employed to facilitate their analysis in such complex sample matrices. However, these studies are often conducted for a limited number of plastic types in matrices with relatively little additional materials. Thus, much remains unknown about what parameters influence the detection limits of Raman spectroscopy for more environmentally relevant samples. To address this, this study utilizes Raman spectroscopy to detect six plastic particle types; 161 and 33 nm polystyrene, < 450 nm and 36 nm poly(ethylene terephthalate), 121 nm polypropylene, and 126 nm polyethylene; spiked into artificial saltwater, artificial freshwater, North Sea, Thames River, and Elbe River water. Overall, factors such as plastic particle properties, water matrix composition, and experimental setup were shown to influence the final limits of detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116468DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
16
plastic particle
8
detection
4
detection submicron-
4
submicron- nanoplastics
4
nanoplastics spiked
4
spiked environmental
4
environmental fresh-
4
fresh- saltwater
4
raman
4

Similar Publications

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy.

Nano Lett

January 2025

Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.

View Article and Find Full Text PDF

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.

View Article and Find Full Text PDF

Advances in Functional Nucleic Acid SERS Sensing Strategies.

ACS Sens

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!