Background: While evidence suggests that PM is associated with overall prevalence of Metabolic (dysfunction)-Associated Fatty Liver Disease (MAFLD), effects of comprehensive air pollutant mixture on MAFLD and its subtypes remain unclear.
Objective: To investigate individual and joint effects of long-term exposure to comprehensive air pollutant mixture on MAFLD and its subtypes.
Methods: Data of 27,699 participants of the Chinese Cohort of Working Adults were analyzed. MAFLD and subtypes, including overweight/obesity, lean, and diabetes MAFLD, were diagnosed according to clinical guidelines. Concentrations of NO, SO, NH, organic matter (OM), black carbon (BC), PM, SO, NO, O and CO were estimated as a weighted average over participants' residential and work addresses for the three years preceding outcome assessment. Logistic regression and weighted quantile sum regression were used to estimate individual and joint effects of air pollutant mixture on presence of MAFLD.
Results: Overall prevalence of MAFLD was 26.6 % with overweight/obesity, lean, and diabetes MAFLD accounting for 92.0 %, 6.4 %, and 1.6 %, respectively. Exposure to SO, NO, NH, BC, PM, NO, Oand CO was significantly associated with overall MAFLD, overweight/obesity MAFLD, or lean MAFLD in single pollutant models. Joint effects of air pollutant mixture were observed for overall MAFLD (OR = 1.10 [95 % CI: 1.03, 1.17]), overweight/obesity (1.09 [1.02, 1.15]), and lean MAFLD (1.63 [1.28, 2.07]). Contributions of individual air pollutants to joint effects were dominated by CO in overall and overweight/obesity MAFLD (Weights were 42.31 % and 45.87 %, respectively), while SO (36.34 %), SO (21.00 %) and BC (12.38 %) were more important in lean MAFLD. Being male, aged above 45 years and smoking increased joint effects of air pollutant mixture on overall MAFLD.
Conclusions: Air pollutant mixture was associated with MAFLD, particularly the lean MAFLD subtype. CO played a pivotal role in both overall and overweight/obesity MAFLD, whereas SO were associated with lean MAFLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108734 | DOI Listing |
Environ Res
January 2025
Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong. Electronic address:
The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China. Electronic address:
Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland. Electronic address:
Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!