Differentiation therapy using all-trans retinoic acid (ATRA) for acute promyelocytic leukemia (APL) is well established. However, because the narrow application and tolerance development of ATRA need to be improved, we searched for another efficient myeloid differentiation inducer. Kinase activation is involved in leukemia biology and differentiation block. To identify novel myeloid differentiation inducers, we used a Kinase Inhibitor Screening Library. Using a nitroblue tetrazolium dye reduction assay and real-time quantitative PCR using NB4 APL cells, we revealed that, PD169316, SB203580, SB202190 (p38 MAPK inhibitor), and triciribine (TCN) (Akt inhibitor) potently increased the expression of CD11b. We focused on TCN because it was reported to be well tolerated by patients with advanced hematological malignancies. Nuclear/cytoplasmic (N/C) ratio was significantly decreased, and myelomonocytic markers (CD11b and CD11c) were potently induced by TCN in both NB4 and acute myeloid leukemia (AML) M2 derived HL-60 cells. Western blot analysis using NB4 cells demonstrated that TCN promoted ERK1/2 phosphorylation, whereas p38 MAPK phosphorylation was not affected, suggesting that activation of the ERK pathway is involved in TCN-induced differentiation. We further examined that whether ATRA may affect phosphorylation of ERK and p38, and found that there was no obvious effect, suggesting that ATRA induced differentiation is different from TCN effect. To reveal the molecular mechanisms involved in TCN-induced differentiation, we performed microarray analysis. Pathway analysis using DAVID software indicated that "hematopoietic cell lineage" and "cytokine-cytokine receptor interaction" pathways were enriched with high significance. Real-time PCR analysis demonstrated that components of these pathways including IL1β, CD3D, IL5RA, ITGA6, CD44, ITGA2B, CD37, CD9, CSF2RA, and IL3RA, were upregulated by TCN-induced differentiation. Collectively, we identified TCN as a novel myeloid cell differentiation inducer, and trials of TCN for APL and non-APL leukemia are worthy of exploration in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093380 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303428 | PLOS |
J Thorac Dis
December 2024
Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China.
Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China.
Long non-coding RNAs (lncRNAs) are crucial regulatory molecules that participate in numerous cellular development processes, and they have gathered much interest recently. HOXA10 antisense RNA (HOXA10-AS, also known as HOXA-AS4) is a novel lncRNA that was identified to be dysregulated in some prevalent malignancies. In this review, the clinical significance of HOXA10-AS for the prognosis of various cancers is analyzed.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China. Electronic address:
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), is gradually emerging as one of the most prevalent liver diseases worldwide. Previous research demonstrated the involvement of myeloid differentiation factor 2 (MD2), a co-receptor of TLR4, as a key mediator in MASLD pathogenesis. The current study identifies JM-9 as a novel MD2 inhibitor, and focuses on evaluating its potential therapeutic effects in mitigating MASLD progression.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States. Electronic address:
Protein arginine methyltransferases (PRMTs) are enzymes that catalyze the methylation of arginine residues in eukaryotic proteins, playing critical roles in modulating diverse cellular processes. The importance of PRMTs in the incidence and progression of a wide range of diseases, particularly cancers, such as breast, liver, lung, colorectal cancer, lymphoma, leukemia, and acute myeloid leukemia (AML) is increasingly recognized. This underscores the critical need for the development of effective PRMT inhibitors as therapeutic intervention.
View Article and Find Full Text PDFBlood Adv
January 2025
The Ohio State University, Columbus, Ohio, United States.
Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!