Two-dimensional sparse arrays and row-column arrays are both alternatives to 2-D fully addressed arrays with lower channel counts. Row-column arrays have recently demonstrated fast 3-D structural and flow imaging but commonly suffer from high grating lobes or require multiplexing to achieve better quality. Two-dimensional sparse arrays enable full-volume acquisitions for each transmit event, but plane-wave transmissions with them usually lack quality in terms of uniformity of wavefronts. Here, we propose a novel architecture that combines both types of these arrays in one aperture, enabling imaging using row-column or sparse arrays alone or a hybrid imaging scheme where the row-column array is used in transmission and a 2-D sparse array in reception. This hybrid imaging scheme can potentially solve the shortcomings of each of these approaches. The sparse array layout chosen is a Costas array, characterized by having only one element per row and column, facilitating its integration with row-column arrays. We simulate images acquired with TOBE-Costas arrays using the hybrid imaging scheme and compare them to row-column and sparse spiral arrays of equivalent aperture size (128λ × 128λ at 7.5 MHz) in ultrafast plane-wave imaging of point targets and 3-D power Doppler imaging of synthetic flow phantoms. Our simulation results show that TOBE-Costas arrays exhibit superior resolution and lower sidelobe levels compared with plane-wave compounding with row-column arrays. Compared with density-tapered spiral arrays, they provide a larger field of view and finer resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2024.3400229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!