Innovative antifungal therapies are of crucial importance to combat the potentially life-threatening infections linked to the multidrug-resistant fungal pathogen . Induction of regulated cell death, apoptosis, could provide an outline for future therapeutics. Human antimicrobial peptides (AMPs), well-known antifungal compounds, have shown the ability to induce apoptosis in pathogenic fungi. Although it is known that AMPs possess antifungal activity against , their ability to induce apoptosis requires further investigations. This study evaluated the effects of AMPs on the induction of apoptosis in . Human neutrophil peptide-1 (HNP-1), human β-Defensins-3 (hBD-3) and human salivary histatin 5 (His 5) were assessed against two clinical isolates. Apoptosis hallmarks were examined using FITC-Annexin V/PI double labelling assay and terminal deoxynucleotidyl transferase deoxynucleotidyl transferase nick-end labelling (TUNEL) to detect phosphatidylserine externalization and DNA fragmentation, respectively. Then, several intracellular triggers were studied using JC-10 staining, spectrophotometric assay and 2',7'-dichlorofluorescin diacetate staining to measure the mitochondrial membrane potential, cytochrome-c release and reactive oxygen species (ROS) production, respectively. FITC-Annexin V/PI staining and TUNEL analysis revealed that exposure of cells to HNP-1 and hBD-3 triggered both early and late apoptosis, while His 5 caused significant necrosis. Furthermore, HNP-1 and hBD-3 induced significant mitochondrial membrane depolarization, which resulted in substantial cytochrome c release. In contrast to His 5, which showed minimal mitochondrial depolarization and no cytochrome c release. At last, all peptides significantly increased ROS production, which is related to both types of cell death. Therefore, these peptides represent promising and effective antifungal agents for treating invasive infections caused by multidrug-resistant
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.001835 | DOI Listing |
Curr Microbiol
January 2025
Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB.
View Article and Find Full Text PDFChem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
The natural world is a vast reservoir of exceptionally varied and inventive chemical compositions. Natural products are used as initial compounds to create combinatorial libraries by targeted modifications and then by analyzing their structure-activity connections. This stage is regarded as a crucial milestone in drug discovery and development.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
This research was designed to investigate the metabolite profiling, phenolics content, and the trypanocidal, nematicidal, antibacterial, antifungal, and free radical scavenging properties of Motyka. The air-dried material was extracted successively with dichloromethane and methanol (UlMeOH). Two phases were obtained from the extract with dichloromethane, one soluble in methanol (UlDCM-s) and the other insoluble (UlDCM-i).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!