Culturing Immortalized Human Airway Epithelial Cells at an Air-Liquid Interface for Measles Virus Infection.

Methods Mol Biol

Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.

Published: May 2024

AI Article Synopsis

  • Measles virus (MeV) primarily infects airway surface epithelial cells, where it amplifies before spreading through respiratory droplets like coughing and sneezing.
  • Various polarized epithelial cell lines, including 16HBE14o-, Calu-3, H358, and NuLi-1, are used to study MeV infection and its effects.
  • This chapter outlines the culture conditions, techniques for confirming cell integrity and preparing samples for analysis, and how findings can apply to other respiratory viruses.

Article Abstract

Measles virus (MeV) infection of airway surface epithelial cells provides a site for final amplification before being released back into the environment via coughing and sneezing. Multiple cell lines have served as models of polarized epithelia for MeV infection, such as Caco2 cells (intestinal derived human epithelia) or MDCK cells (kidney derived canine epithelia). In this chapter, we describe the materials and air-liquid interface (ALI) culture conditions for maintaining four different cell lines derived from human airway epithelial cells: 16HBE14o-, Calu-3, H358, and NuLi-1. We provide methods for confirming transepithelial electrical resistance (TER) and preparing samples for microscopy as well as expected results from apical or basolateral MeV delivery. Polarized human airway derived cells serve as tissue culture models for investigating targeted questions about how MeV exits a human host. In addition, these methods are generalizable to studies of other respiratory viruses or the biology of ALI airway epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3870-5_11DOI Listing

Publication Analysis

Top Keywords

epithelial cells
16
human airway
12
airway epithelial
12
air-liquid interface
8
measles virus
8
mev infection
8
cell lines
8
derived human
8
cells
7
human
5

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!