A miniaturized analytical methodology was introduced based on the combination of a direct and online hollow fiber microextraction method with smartphone color detection. The method was used for the determination of formaldehyde (target analyte) in fabric and wastewater samples. In this regard, two reagents including ammonium acetate buffer and acetylacetone were added to the formaldehyde samples to create a colored compound. The colored compound was extracted from the sample by using the hollow fiber liquid-phase microextraction method, the extracted phase was not taken out of the extraction box and was directly transferred into a specially designed detection cell, and a smartphone was applied for in-situ color sensing and data readout. This combination gathered the advantages of both state-of-the-art microextraction techniques and smartphone sensing. Formaldehyde, as a carcinogenic compound widely used in paint and clothing industries, was selected as a model test. Factors affecting extraction efficiency were investigated and optimized, including the type of organic solvents, reagent concentration, salt, pH, stirring speed, reaction temperature, and extraction time. The linear region of the method under optimal conditions was 40-1500 µg L for wastewater samples and 0.3-11.2 mg kg for fabrics. The limit of detection and limit of qualification were 13 and 40 µg L, respectively. The relative standard deviations for concentrations of 100 and 1000 µg L were 6% and 4%, respectively. To evaluate the application of the method for real samples, types of fabric and two samples of oil refinery wastewater were selected. The relative recovery in real samples was 84-98%. The results of the analytical parameters of the method show that the developed method can be used as an efficient method to determine formaldehyde in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-024-06406-0DOI Listing

Publication Analysis

Top Keywords

hollow fiber
12
wastewater samples
12
real samples
12
online hollow
8
fabric wastewater
8
samples
8
method
8
microextraction method
8
colored compound
8
formaldehyde
5

Similar Publications

Implications of drug-induced phenotypical resistance: Is isoniazid radicalizing ?

Front Antibiot

September 2022

Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, United Kingdom.

Background: Tuberculosis treatment duration is long and does not guarantee eradication of infection. Shorter treatment regimens are a critical research objective to improve uptake and reduce the risk of relapse and bacterial resistance. The explanation for the need to continue treatment after patients are culture negative remains elusive.

View Article and Find Full Text PDF

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.

View Article and Find Full Text PDF

As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!