Utilizing solar light and water matrix components in situ to reduce the chemical and energy demands would make treatment technologies more sustainable for micropollutant abatement in wastewater effluents. We herein propose a new strategy for micropollutant abatement through dissolved organic matter (DOM)-mediated photosensitized activation of monochloramine (NHCl). Exposing the chlorinated wastewater effluent with residual NHCl to solar irradiation (solar/DOM/NHCl process) degrades six structurally diverse micropollutants at rate constants 1.26-34.2 times of those by the solar photolysis of the dechlorinated effluent (solar/DOM process). Notably, among the six micropollutants, the degradation rate constants of estradiol, acetaminophen, bisphenol A, and atenolol by the solar/DOM/NHCl process are 1.13-4.32 times the summation of those by the solar/DOM and solar/NHCl processes. The synergism in micropollutant degradation is attributed to the generation of reactive nitrogen species (RNS) and hydroxyl radicals (HO) from the photosensitized activation of NHCl. Triplet state-excited DOM (DOM*) dominates the activation of NHCl, leading to the generation of RNS, while HO is produced from the interactions between RNS and other photochemically produced reactive intermediates (e.g., O and DOM). The findings advance the knowledge of DOM-mediated photosensitization and offer a sustainable method for micropollutant abatement in wastewater effluents containing residual NHCl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c00224 | DOI Listing |
Water Res
December 2024
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Biological activated carbon (BAC) filtration is vital for the abatement of micropollutants in drinking water. However, limited information is available on contaminant removal in BAC filters with aged media (e.g.
View Article and Find Full Text PDFWater Res
March 2025
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China. Electronic address:
Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl) are inevitable in aqueous systems, leading to the EOP/Cl system. The oxidation of Cl at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Cl), homogeneous free available chlorine (FAC), chlorine dioxide (ClO), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl using the RuO/IrO-Ti anode.
View Article and Find Full Text PDFSci Total Environ
October 2023
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
Sulfite autoxidation in combination with the cobalt-based heterogeneous activators, has recently emerged as the efficient sulfate radical (SO) generation process for organic micropollutant abatement in the water and wastewater treatment, yet the sluggish >Co(II)/Co(III) redox cycling currently compromises the efficacy of radical generation and the potential applications. Herein, regarding that the reductive W(IV) species in WS can modulate the >Co(II)/Co(III) redox cycling in the advanced oxidation processes, confinement of cobalt with WS (Co-WS) is designed and characterized. The Co-WS/sulfite process achieves an ultrafast tetracycline (TC) abatement (~100 % abatement of TC within 1 min) under circumneutral conditions with lower dosage of sulfite and activator, outperforming the current cobalt-based heterogeneous counterparts.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada. Electronic address:
J Hazard Mater
December 2024
Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314000, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China. Electronic address:
This study systematically investigated the direct activation of chlorine by visible light emitting diode (Vis-LED). Vis-LED could effectively activate chlorine to degrade micropollutants with degradation efficiency and pseudo-first-order degradation rate constant range of 64.3-100 % and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!