Enhanced thermal, chemical, and mechanical properties of different metal nanoparticle morphologies integrated with metal oxides have been reported in multiple instances. The chemical and material robustness of metal nanoparticles incorporated surficially and into the bulk of distinct as well as spontaneously formed morphologies of metal oxides through solution-based and microwave-based approaches are investigated in this study. These composites were tested for their chemical and material robustness by exposing films formed on quartz substrates to high temperatures (800 °C) in an air ambient as well as to extreme conditions of pH, often encountered in harsh environment applications such as sensing and catalysis. The changes in the optical properties and crystallinity have been studied using absorption and X-ray diffraction analyses and electron microscopy. The trends observed with respect to the changes in the plasmonic absorbance were validated theoretically and found to be in reasonable agreement with the experimental data. Confirmations of the phenomena occurring in different morphologies and architectures were thereby corroborated through careful interpretations from experiments and predictions from theoretical models. We, therefore, report a simple solution-based process for achieving engineered harsh environment-compatible nanocomposites through studies specifically tailored for such applications such as catalysis, sensing, energy storage, and enhanced luminescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp05831j | DOI Listing |
Sensors (Basel)
December 2024
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
In recent years, wireless sensor networks have been widely used, especially in three-dimensional environments such as underwater and mountain environments. However, in harsh environments, wireless sensor networks may be damaged and split into many isolated islands. Therefore, restoring network connectivity to transmit data effectively in a timely manner is particularly important.
View Article and Find Full Text PDFMicroorganisms
December 2024
MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China.
Symbiotic microbiota significantly influence the development, physiology, and behavior of their hosts, and therefore, they are widely studied. However, very few studies have investigated the changes in symbiotic microbiota across generations. originating from the Qinghai-Tibetan Plateau were cultured through seven generations in our laboratory, and the symbiotic microbiota of were sequenced using a 16S rRNA amplicon to analyze changes in the structure and functional properties of the symbiotic microbiota of from a harsh environment to an ideal environment.
View Article and Find Full Text PDFPathogens
November 2024
Guangzhou CnFerment Biotechnology Co., Ltd., Guangzhou 510440, China.
Gram-negative bacteria possess an asymmetric outer membrane, where the outer leaflet consists of LPSs and the inner leaflet comprises phospholipids. , an opportunistic milk-borne pathogen that causes severe neonatal meningitis and bacteremia, displays diverse lipopolysaccharide (LPS) structures. As a barrier of the bacterial cell, LPSs likely influenced resistance to environment stresses; however, there are no research reports on this aspect, hindering the development of novel bactericidal strategies overcoming the pathogen's resilience.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev Trg 19, HR-10000 Zagreb, Croatia.
Enzymatic reactions play an important role in numerous industrial processes, e.g., in food production, pharmaceuticals and the production of biofuels.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT 84602, USA.
Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and allow real-time adjustments to frequency and bandwidth. In this paper, a method is introduced to actuate a panel using EWOD forces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!