We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202302423RRDOI Listing

Publication Analysis

Top Keywords

mirna cargo
16
biosensor capability
12
capability endometrium
12
endometrium mediated
12
extracellular vesicles
12
developmental potential
12
cloned conceptuses
12
cargo contained
8
conceptus peri-implantation
8
peri-implantation period
8

Similar Publications

Purpose: Extracellular vesicles (EVs) secreted by non-pigmented ciliary epithelial (NPCE) cells under oxidative stress may contribute to primary open-angle glaucoma (POAG) pathogenesis by altering gene expression in human trabecular meshwork (HTM) cells. This study investigated the impact of microRNAs (miRNAs) carried by NPCE-derived EVs on HTM cell gene expression under oxidative stress conditions.

Methods: NPCE cells were exposed to oxidative stress, and EVs were isolated from control and stressed cells.

View Article and Find Full Text PDF

Bubble Ticket Trip: Exploring the Mechanism of miRNA Sorting into Exosomes and Maintaining the Stability of Tumor Microenvironment.

Int J Nanomedicine

December 2024

Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China.

Exosomes are vesicles ranging from 30 to 100 nanometers in size that show great potential as carriers for therapeutic uses and drug delivery. Enriching a specific set of miRNAs in exosomes emphasizes the existence of particular sorting mechanisms that manage the targeted cargo packaging. The molecular mechanism for miRNA sorting has not been understood.

View Article and Find Full Text PDF

Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles.

RNA Biol

December 2025

Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.

Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.

View Article and Find Full Text PDF

Enzyme-Responsive Nanoparachute for Targeted miRNA Delivery: A Protective Strategy Against Acute Liver and Kidney Injury.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.

MicroRNA (miRNA)-based therapy holds significant potential; however, its structural limitations pose a challenge to the full exploitation of its biomedical functionality. Framework nucleic acids are promising owing to their transportability, biocompatibility, and functional editability. MiRNA-125 is embedded into a nucleic acid framework to create an enzyme-responsive nanoparachute (NP), enhancing the miRNA loading capacity while preserving the attributes of small-scale framework nucleic acids and circumventing the uncertainty related to RNA exposure in conventional loading methods.

View Article and Find Full Text PDF

Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!