A reversible, first-order transition separating two liquid phases of a single-component material is a fascinating yet poorly understood phenomenon. Here, we investigate the liquid-liquid transition (LLT) ability of two tetraalkylphosphonium ionic liquids (ILs), [P]Cl and [P][1,2,4-triazolide], using differential scanning calorimetry and dielectric spectroscopy. The latter technique also allowed us to study the LLT at elevated pressure. We found that cooling below 205 K transforms [P]Cl and [P][Trz] from one liquid state (liquid 1) to another (the self-assembled liquid 2), while the latter facilitates the charge transport decoupled from structural dynamics. In contrast to temperature, pressure was found to play an essential role in the self-organization of a liquid 2 phase, resulting in different time scales of charge transport for rapidly and slowly compressed samples. Furthermore, () was found to be much shorter than (, =atm), which constitutes the first example of non-isochronal behavior of charge transport at LLT. In turn, dielectric studies through the liquid-glass transition revealed the non-monotonic behavior of at elevated pressure for [P]Cl, while for [P][Trz] () was almost constant. These results highlight the diversity of liquid-liquid transition features within the class of phosphonium ionic liquids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129292PMC
http://dx.doi.org/10.1021/acs.jpcb.4c00939DOI Listing

Publication Analysis

Top Keywords

charge transport
16
ionic liquids
12
non-isochronal behavior
8
behavior charge
8
liquid-glass transition
8
liquid-liquid transition
8
elevated pressure
8
[p]cl [p][trz]
8
transition
5
liquid
5

Similar Publications

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!