The discovery of cerebral amyloid angiopathy (CAA) is frequently attributed to Dr. Gustav Oppenheim-a man who has been largely passed over in history. Oppenheim's clinical and neuropathologic research covered a variety of disorders, but his name is best known for his work on senile dementia and CAA. Although Oppenheim was in fact not the first to discover CAA, his neuropathologic observations and inferences on neurodegenerative disease proved to be remarkably faithful to our modern understanding of neurodegenerative diseases. As a neurologist, he served in the First World War and was later subjected to religious persecutions in the leadup to the Holocaust but was not fortunate enough to emigrate before his death. The life, social impact, and previously overlooked contributions to science and medicine by Oppenheim are detailed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/10738584241251828 | DOI Listing |
Cell Tissue Res
January 2025
Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.
Carl C. Speidel (1919) and Ernst Scharrer (1928) were privileged witnesses of the encounter between neurons and hormones, a biological phenomenon that had been occurring in nature during millions of years of evolution, as Berta Scharrer started to unfold since 1935 on. The story of neurosecretion is intimately associated to that of the hypothalamus, such a "marvellous region", as Wolfgang Bargmann (1975) called it.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Chemistry, University of Wisconsin-Madison; Madison, WI 53706, USA.
Alzheimer's disease (AD) is characterized by the accumulation of protein aggregates, which are thought to be influenced by posttranslational modifications (PTMs). Dehydroamino acids (DHAAs) are rarely observed PTMs that contain an electrophilic alkene capable of forming protein-protein crosslinks, which may lead to protein aggregation. We report here the discovery of DHAAs in the protein aggregates from AD, constituting an unknown and previously unsuspected source of extensive proteomic complexity.
View Article and Find Full Text PDFCan J Psychiatry
January 2025
Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
Background: Late-life depression (LLD) is often accompanied by cognitive impairment, which may persist despite antidepressant treatment. Repetitive transcranial magnetic stimulation (rTMS) is an efficacious treatment for depression, with potential benefits on cognitive functioning. However, research on cognitive effects is inconclusive, relatively sparse in LLD, and predominantly focused on group-level cognitive changes.
View Article and Find Full Text PDFNature
January 2025
Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Psychiatry, University of Oxford, Oxford, UK.
Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n = 40) scores on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n = 37).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!