Morphological anisotropic engineering is powerful to synthesize metal-organic frameworks (MOFs) with versatile physicochemical properties for diverse applications ranging from gas storage/separation to electrocatalysis and batteries, etc. Herein, we developed a carbon substrate guided strategy to manipulate the facet-dependent coordination for morphology engineering of Fe-THBQ (tetrahydroxy-1,4-benzoquinone) frameworks, which is built with cubic Fe octamer bridged by two parallel THBQ ligands along three orthogonal axes, extending to a three-dimensional (3D) framework with pcu-e network topology. The electronegative O-containing functional groups on carbon surfaces compete with THBQ linkers to selectively interact with the unsaturated coordinated Fe cations on the {111} facets and inhibit crystal growth along the <111> direction. The morphology of Fe-THBQ evolves from thermodynamically favored truncated cube to cuboctahedron depending on the content of O-containing functional groups on the carbon substrate. The Fe-THBQ with varied morphologies exhibits facet-dependent performances for electrochemical lithium storage. This work will shed light on the morphology modulation of MOFs for promising applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202405066 | DOI Listing |
Phys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Photoacoustics
February 2025
Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, The Netherlands.
Photoacoustic imaging (PAI) is a developing image modality that benefits from light-matter interaction and low acoustic attenuation to provide functional information on tissue composition at relatively large depths. Several studies have reported the potential of dichroism-sensitive photoacoustic (DS-PA) imaging to expand PAI capabilities by obtaining morphological information of tissue regarding anisotropy and predominant orientation. However, most of these studies have limited their analysis to superficial scanning of samples, where fluence effects are negligible.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, National Textile University, Faisalabad, Pakistan.
Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center for Material Science, Vijnana Bhavan, Manasagangotri, University of Mysore, Mysuru 570017, India.
The Powder X-ray diffraction (PXRD) data of Nelumbo Nucifera fibre is utilized to study multifaceted properties. Rietveld refinement was carried out along with cellulose phase. The crystallite size was computed using the Scherrer equation, and through first principle calculations, it has been illustrated and concluded that the size is not ellipsoidal, as previously suggested by other researchers; rather, it exhibits a multidimensional shape.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China. Electronic address:
Polymorphic nanoparticles, including starch nanoparticles (SNPs), have increasingly attracted attention, particularly rod-shaped variants, which are used for constructing anisotropic systems. Compared to symmetrically spherical particles, they show superior properties such as gastrointestinal retention for functional nutrients/drugs delivery and mechanical enhancement of filled materials, but their controlled fabrication remains a challenge. In this study, we yielded polymorphic SNPs with nearly axisymmetric geometries through a combined alkaline hydrolysis and nanoprecipitation method, followed by temperature-controlling rearrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!