A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NbC Nanoparticles Decorated Carbon Nanofibers as Highly Active and Robust Heterostructural Electrocatalysts for Ammonia Synthesis. | LitMetric

Transition-metal carbides with metallic properties have been extensively used as electrocatalysts due to their excellent conductivity and unique electronic structures. Herein, NbC nanoparticles decorated carbon nanofibers (NbC@CNFs) are proposed as an efficient and robust catalyst for electrochemical synthesis of ammonia from nitrate/nitrite reduction, which achieves a high Faradaic efficiency (FE) of 94.4 % and a large ammonia yield of 30.9 mg h mg . In situ electrochemical tests reveal the nitrite reduction at the catalyst surface follows the *NO pathway and theoretical calculations reveal the formation of NbC@CNFs heterostructure significantly broadens density of states nearby the Fermi energy. Finite element simulations unveil that the current and electric field converge on the NbC nanoparticles along the fiber, suggesting the dispersed carbides are highly active for nitrite reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202406441DOI Listing

Publication Analysis

Top Keywords

nbc nanoparticles
12
nanoparticles decorated
8
decorated carbon
8
carbon nanofibers
8
highly active
8
nitrite reduction
8
nanofibers highly
4
active robust
4
robust heterostructural
4
heterostructural electrocatalysts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!