DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including , which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (AB) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of DNA gyrase relative to those from other bacterial species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154950PMC
http://dx.doi.org/10.1021/acs.biochem.4c00161DOI Listing

Publication Analysis

Top Keywords

dna gyrase
12
gyrb atpase
12
atpase site
12
dna
10
atpase domain
8
dynamical-nonequilibrium molecular
8
molecular dynamics
8
gyrb
8
atpase
6
gyrase
5

Similar Publications

Anti-Mycobacterial Activity of Bacterial Topoisomerase Inhibitors with Dioxygenated Linkers.

ACS Infect Dis

January 2025

Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.

Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.

View Article and Find Full Text PDF

Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging 4 replicates of 4 different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing.

View Article and Find Full Text PDF

In this work, we have adopted an easy route to synthesizing bis-1,2,3-triazole-based benzophenone compounds via a 1,3-dipolar cycloaddition reaction (Click Chemistry). All the target compounds achieved better yields though the microwave-assisted method than the conventional method. Target compounds structure were confirmed based on the IR, 1H NMR, 13C NMR and HR Mass analysis.

View Article and Find Full Text PDF

Background/objectives: The alarming rise in antibiotic resistance necessitates the discovery of novel antimicrobial agents. This study aims to design, synthesize, and evaluate new benzofuran-pyrazole-based compounds for their antimicrobial, antioxidant, and anti-inflammatory properties.

Methods: New benzofuran-pyrazole hybrid molecules were synthesized using the Vilsmeier-Haach reaction and other chemical processes.

View Article and Find Full Text PDF

, an important cause of enzootic pneumonia in pigs in many countries, has recently been shown to exhibit reduced susceptibility to several antimicrobial classes. In the present study, a total of 185 pig lung tissue samples were collected from abattoirs in Australia, from which 21 isolates of were obtained. The antimicrobial resistance profile of the isolates was determined for 12 antimicrobials using minimum inhibitory concentration (MIC) testing, and a subset ( = 14) underwent whole-genome sequence analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!