This study aims to explore the predictive value of T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC), and early-delayed phases enhanced magnetic resonance imaging (DCE-MRI) radiomics prediction model in determining human epidermal growth factor receptor 2 status in breast cancer. A retrospective study was conducted, involving 187 patients with confirmed breast cancer by postsurgical pathology at Zhenjiang First People's Hospital during January 2021 and May 2023. Immunohistochemistry or fluorescence in situ hybridization was used to determine the HER-2 status of these patients, with 48 cases classified as HER-2 positive and 139 cases as HER-2 negative. The training set was used to construct the prediction models and the validation set was used to verify the prediction models. Layers of T2WI, ADC, and early-delayed phase DCE-MRI images were used to delineate the volumeof interest and 960 radiomic features were extracted from each case using Pyradiomic. After screening and dimensionality reduction by intraclass correlation coefficient, Pearson correlation analysis, least absolute shrinkage, and selection operator, the radiomics labels were established. Logistic regression analysis was used to construct the T2WI radiomics model, ADC radiomics model, DCE-2 radiomics model, DCE-6 radiomics model, and the joint sequence radiomics model to predict the HER-2 expression status of breast cancer, respectively. Based on the clinical, pathological, and MRI image characteristics of patients, univariate and multivariate logistic regression analysis wasused to construct a clinicopathological MRI feature model. The radscore of every patient and the clinicopathological MRI features which were statistically significant after screening were used to construct a nomogram model. The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of each model and the decision curve analysis wasused to evaluate the clinical usefulness. The T2WI, ADC, DCE-2, DCE-6, and joint sequence radiomics models, the clinicopathological MRI feature model, and the nomogram model were successfully constructed to predict the expression status of HER-2 in breast cancer. ROC analysis showed that in the training set and validation set, the areas under the curve (AUC) of the T2WI radiomics model were 0.797 and 0.760, of the ADC radiomics model were 0.776 and 0.634, of the DCE-2 radiomics model were 0.804 and 0.759, of the DCE-6 radiomics model were 0.869 and 0.798, of the combined sequence radiomics model were 0.908 and 0.847, of the clinicopathological MRI feature model were 0.703 and 0.693, and of the nomogram model were 0.938 and 0.859, respectively. In the training set, the combined sequence radiomics model outperformed the clinicopathological features model (<0.001). In the training and validation sets, the nomogram outperformed the clinicopathological features model (<0.05). In addition, the diagnostic performance of the nomogram was better than that of the four single-modality radiomics models in the training cohort (<0.05) and was better than that of DCE-2 and ADC models in the validation cohort (<0.05). Decision curve analysis indicated that the value of individualized prediction models was higher than clinical and pathological prediction models in clinical practice. The calibration curve showed that the multimodal radiomics model had a high consistency with the actual results in predicting HER-2 expression. T2WI, ADC and early-delayed phase DCE-MRI imaging histology models for HER-2 expression status in breast cancer are expected to provide a non-invasive virtual pathological basis for decision-making on preoperative neoadjuvant regimens in breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.cn112152-20230816-00086 | DOI Listing |
Front Neurol
December 2024
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).
Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.
Front Mol Biosci
December 2024
Department of Nephrology, Aerospace Center Hospital, Beijing, China.
Background: The aim of the present study was to establish a predictive model to predict the peritoneal cancer index (PCI) preoperatively in patients with pseudomyxoma peritonei (PMP).
Methods: A total of 372 PMP patients were consecutively included from a prospective follow-up database between 1 June 2013 and 1 June 2023. Nine potential variables, namely, gender, age, Barthel Index (BAI), hemoglobin (Hb), albumin (Alb), D-dimer, carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA 125), and CA 19-9, were estimated using multiple linear regression (MLR) analysis with a stepwise selection procedure.
Front Oncol
December 2024
Department of Respiratory and Critical Care Medicine, Center for Respiratory Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Artificial intelligence (AI) has significantly impacted various fields, including oncology. This comprehensive review examines the current applications and future prospects of AI in lung cancer research and treatment. We critically analyze the latest AI technologies and their applications across multiple domains, including genomics, transcriptomics, proteomics, metabolomics, immunomics, microbiomics, radiomics, and pathomics in lung cancer research.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.
Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).
Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.
Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.
J Imaging Inform Med
January 2025
Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
A scoping review was conducted to investigate the role of radiological imaging, particularly high-resolution computed tomography (HRCT), and artificial intelligence (AI) in diagnosing and prognosticating idiopathic pulmonary fibrosis (IPF). Relevant studies from the PubMed database were selected based on predefined inclusion and exclusion criteria. Two reviewers assessed study quality and analyzed data, estimating heterogeneity and publication bias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!