Quantifying genetic structure and levels of genetic variation are fundamentally important to predicting the ability of populations to persist in human-altered landscapes and adapt to future environmental changes. Genetic structure reflects the dispersal of individuals over generations, which can be mediated by species-level traits or environmental factors. Dispersal distances are commonly positively associated with body size and negatively associated with the amount of degraded habitat between sites, motivating the investigation of these potential drivers of dispersal concomitantly. We quantified genetic structure and genetic variability within populations of seven bee species from the genus across fragmented landscapes. We genotyped bees at SNP loci and tested the following predictions: (1) deforested areas restrict gene flow; (2) larger species have lower genetic structure; (3) species with greater resource specialization have higher genetic structure; and (4) sites surrounded by more intact habitat have higher genetic diversity. Contrasting with previous work on bees, we found no associations between body size and genetic structure. Genetic structure was higher for species with greater resource specialization, and the amount of intact habitat between or surrounding sites was positively associated with parameters reflecting gene flow and genetic diversity. These results challenge the dominant paradigm that individuals of larger species disperse farther, and they suggest that landscape and resource requirements are important factors mediating dispersal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089087PMC
http://dx.doi.org/10.1002/ece3.11358DOI Listing

Publication Analysis

Top Keywords

genetic structure
32
body size
12
genetic
12
landscape resource
8
size genetic
8
structure
8
positively associated
8
structure genetic
8
gene flow
8
larger species
8

Similar Publications

The MADS-box protein SHATTERPROOF 2 regulates TAA1 expression in the gynoecium valve margins.

Plant Reprod

January 2025

Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.

SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal.

View Article and Find Full Text PDF

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) with the two predominant endophenotypes-Crohn's disease (CD) and ulcerative colitis (UC)-represents a group of chronic gastrointestinal inflammatory conditions. Since most genetic associations with IBD are often limited to independent subtypes, we reported a genome-wide association study (GWAS) cross-trait analysis combined with CD and UC to enhance statistical power. Initially, we detected 256 association signals at 54 genomic susceptibility loci and further characterized the functionality of variants within these regions.

View Article and Find Full Text PDF

Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content.

Angew Chem Int Ed Engl

January 2025

Universite Libre de Bruxelles, Engineering of Molecular NanoSystems, Avenue F. Roosevelt 50, 1050, Brussels, BELGIUM.

Artificial anion transporters offer a potential way to treat deficiencies in cellular anion transport of genetic origins. In contrast to the large variety of mobile anion carriers and self-assembled anion channels reported, unimolecular anion channels are less investigated. Herein, we present a unique example of a unimolecular anion channel based on a bambusuril (BU) macrocycle, a well-established anion receptor.

View Article and Find Full Text PDF

The surveillance of mobile genetic elements facilitating the spread of antimicrobial resistance genes has been challenging. Here, we tracked both clonal and plasmid transmission in colistin- and carbapenem-resistant using short- and long-read sequencing technologies. We observed three clonal transmissions, all containing Incompatibility group (Inc) L plasmids and New Delhi metallo-beta-lactamase , although not co-located on the same plasmid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!