FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089157PMC
http://dx.doi.org/10.3389/fonc.2024.1376496DOI Listing

Publication Analysis

Top Keywords

foxk2
7
cancer
6
emerging roles
4
roles foxk2
4
foxk2 cancers
4
cancers metabolic
4
metabolic disorders
4
disorders foxk2
4
foxk2 member
4
member forkhead
4

Similar Publications

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Objective: To search for a new biomarker that can predict the efficacy and prognosis of tumor immunotherapy.

Method: FOXK2 genes were analyzed using single-cell sequencing in pan-cancer bulk RNA-seq from the TCGA database. We used algorithms to predict their immune infiltration.

View Article and Find Full Text PDF

Copy Number Variation and Selection Signal: Exploring the Domestication History and Phenotype Differences Between Duroc and the Chinese Native Ningxiang Pigs.

Int J Mol Sci

October 2024

Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.

The Ningxiang pig, one of the well-known Chinese native pig breeds, has the advantages of tender meat, high intramuscular fat (IMF) content, and roughage tolerance, compared to the commercial lean pig breeds. The genetic basis for complex traits in Ningxiang pigs has been previously studied through other genetic markers, such as Single Nucleotide Polymorphism (SNP), while the characteristics of copy number variation (CNV) and the selection signal have not been investigated yet. In this study, GGP 50 k genotyping data of 2242 Ningxiang pigs (NX) and 1137 Duroc pigs (Duroc) were involved in CNV atlas construction and selection signals identification.

View Article and Find Full Text PDF
Article Synopsis
  • KSHV (Kaposi's sarcoma-associated herpesvirus) relies on lytic replication for persistent infection, with its proteins hijacking cellular pathways for this process.
  • The study identifies that the proteins FoxK1 and FoxK2 bind with the KSHV protein ORF45, playing a crucial role in late viral gene expression and virion production.
  • The interaction between ORF45 and FoxK1/FoxK2 enhances transcriptional activity at late viral promoters, facilitating KSHV lytic replication and revealing their new roles in KSHV pathogenesis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!