MDM2: current research status and prospects of tumor treatment.

Cancer Cell Int

Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China.

Published: May 2024

Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092046PMC
http://dx.doi.org/10.1186/s12935-024-03356-8DOI Listing

Publication Analysis

Top Keywords

p53
11
mdm2
9
mdm2 current
8
regulation p53
8
p53 mdm2
8
p53 phosphorylation
8
targeting
5
current status
4
status prospects
4
prospects tumor
4

Similar Publications

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Interaction of STIL with FOXM1 regulates SF3A3 transcription in the hepatocellular carcinoma development.

Cell Div

January 2025

Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.

Background: Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC).

Methods: SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR.

View Article and Find Full Text PDF

Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.

View Article and Find Full Text PDF

Lung cancer is the leading cause of mortality in both men and women due to genetic and epigenetic modifications. Our study focuses on fabricating phenmiazine ring leads by a functional group-based drug design to inhibit p53 -7A1W and MDM2-7AU9 proteins responsible for cancer cell growth. One hundred molecules are designed and allowed to bind inside the active site of 7A1W and 7AU9 protein using a glide dock platform and subjected to find MMGBSA.

View Article and Find Full Text PDF

Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!