AI Article Synopsis

  • Dopamine neurons in the ventral tegmental area play a key role in intracranial self-stimulation (ICSS), but their exact cognitive functions are still not fully understood.
  • 20-Hz stimulation of dopamine neurons mimics a weak prediction error and fails to support ICSS beyond a simple reinforcement schedule, lacking the ability to assign value to cues.
  • In contrast, 50-Hz stimulation significantly enhances ICSS, providing a specific reward representation that motivates behavior, indicating that the frequency of stimulation affects dopamine release modulations.

Article Abstract

Dopamine neurons in the ventral tegmental area support intracranial self-stimulation (ICSS), yet the cognitive representations underlying this phenomenon remain unclear. Here, 20-Hz stimulation of dopamine neurons, which approximates a physiologically relevant prediction error, was not sufficient to support ICSS beyond a continuously reinforced schedule and did not endow cues with a general or specific value. However, 50-Hz stimulation of dopamine neurons was sufficient to drive robust ICSS and was represented as a specific reward to motivate behavior. The frequency dependence of this effect is due to the rate (not the number) of action potentials produced by dopamine neurons, which differently modulates dopamine release downstream.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239488PMC
http://dx.doi.org/10.1038/s41593-024-01643-1DOI Listing

Publication Analysis

Top Keywords

dopamine neurons
20
cognitive representations
8
intracranial self-stimulation
8
stimulation dopamine
8
dopamine
6
neurons
5
representations intracranial
4
self-stimulation midbrain
4
midbrain dopamine
4
neurons depend
4

Similar Publications

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Northwestern University, Chicago, IL, USA.

The NSD-ISS Working Group developed a data-driven approach to: 1) determine a biologic definition for disease; 2) establish a framework for a disease staging platform. NSD is defined by the presence of pathologic n-asyn (S) assessed by a validated in vivo biomarker and ultimate presence of dopaminergic neuronal dysfunction (D). This biologic definition is independent of the presence of clinical features, or if present, of the specific clinical syndrome.

View Article and Find Full Text PDF

High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson's Disease Model Mice and Humans.

Anal Chem

January 2025

Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.

View Article and Find Full Text PDF

Background: Aging and the decline in sex steroid hormone (e.g., estrogen) are associated with a potential loss of its neuroprotective effects on the female brain.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

The Chinese University of Hong Kong, Hong Kong, Hong Kong.

Background: Emerging evidence strongly suggests that terminally differentiated neurons in the brain have the potential to undergo a cell cycle-like process during neuronal aging and in the presence of certain diseases. However, due to their infrequent occurrence and unpredictable distribution within the brain, the molecular characteristics and specific variations associated with these cells in different diseases are still not well understood.

Method: By taking advantage of the wealth of human brain single-nucleus RNA sequencing (snRNA-seq) datasets available in public repositories, we developed an analytical pipeline that facilitates the identification and characterization of cell cycle gene re-expressing neurons to address these questions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!