Download full-text PDF

Source
http://dx.doi.org/10.1038/s41564-024-01687-wDOI Listing

Publication Analysis

Top Keywords

microbial dark
4
dark matter
4
matter add
4
add uncertainties
4
uncertainties metagenomic
4
metagenomic trait
4
trait estimations
4
microbial
1
matter
1
add
1

Similar Publications

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Multi-Omics analysis reveals the sensory quality and fungal communities of Tibetan teas produced by wet- and dry-piling fermentation.

Food Res Int

February 2025

Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China. Electronic address:

Ya'an Tibetan tea, a dark tea with a rich historical heritage, is typically processed using two primary piling fermentation methods: wet piling with rolled leaves (moisture content around 60%) and dry piling with sun-dried or baked green tea leaves (moisture content below 30%). This study employed sensory evaluation, targeted and non-targeted metabolomics, and fungal Internal Transcribed Spacer (ITS) sequencing to investigate changes in quality components and fungal composition in Tibetan tea processed by both wet and dry-piling methods. The results revealed that 3,7-Dimethyl-1,5,7-octatriene-3-ol and D-limonene were identified as key volatile metabolites contributing to the aroma variations between the dry and wet-piled teas.

View Article and Find Full Text PDF

Chronic restraint stress affects the diurnal rhythms of gut microbial composition and metabolism in a mouse model of depression.

BMC Microbiol

January 2025

Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.

Background: Depression is a common mental disorder accompanied by gut microbiota dysbiosis, which disturbs the metabolism of the host. While diurnal oscillation of the intestinal microbiota is involved in regulating host metabolism, the characteristics of the intestinal microbial circadian rhythm in depression remain unknown. Our aim was to investigate the microbial circadian oscillation signature and related metabolic pathways in a mouse model with depression-like behaviours.

View Article and Find Full Text PDF

Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (K) of oxidative enzymes are orders of magnitude higher than respiratory K values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!