Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By studying a nonlinear model by inspecting a p-dimensional parameter space through -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091144 | PMC |
http://dx.doi.org/10.1038/s41598-024-61574-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!