Chemotherapy is an important therapuetic strategy for colorectal cancer (CRC), but chemoresistance severely affects its efficacy, and the underlying mechanism has not been fully elucidated. Increasing evidence suggests that lipid peroxidation imbalance-mediated ferroptosis is closely associated with chemoresistance. Hence, targeting ferroptosis pathways or modulating the tolerance to oxidative stress might be an effective strategy to reverse tumor chemoresistance. HtrA serine protease 1 (HTRA1) was screened out as a CRC progression- and chemoresistance-related gene. It is highly expressed in CRC cells and negatively correlated with the prognosis of CRC patients. Gain- and loss-of-function analyses demonstrated a stimulatory role of HTRA1 on the proliferation of CRC cells. The enrichment analysis of HTRA1-interacting proteins indicated the involvement of ferroptosis in the HTRA1-mediated chemoresistance. Moreover, electron microscope analysis, as well as the ROS and MDA levels in CRC cells also confirmed the effect of HTRA1 on ferroptosis. We also verified that HTRA1 could interact with SLC7A11 through its Kazal structural domain and up-regulate the expression of SLC7A11, which in turn inhibited the ferroptosis and leaded to the chemoresistance of CRC cells to 5-FU/L-OHP. Hence, we propose that HTRA1 may be a potential therapeutic target and a prognostic indicator in CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091184 | PMC |
http://dx.doi.org/10.1038/s41420-024-01993-6 | DOI Listing |
Sci Immunol
January 2025
Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.
Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.
Microbiol Spectr
January 2025
Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.
Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.
View Article and Find Full Text PDFCells
December 2024
BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions.
View Article and Find Full Text PDFMol Med Rep
March 2025
Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!