Antennas that can operate across multiple communication standards have remained a challenge. To address these limitations, we propose a Field-Programmable Radio Frequency Surface (FPRFS), which is based on manipulating current flow on its surface to achieve desirable RF characteristics. In this work, we demonstrate that substantial enhancements in radiation efficiency can be achieved while preserving the high reconfigurability of antenna structures implemented on the FPRFS. This is accomplished by utilizing an asymmetric excitation, directing the excitation to the low-loss contiguous surface, and dynamically manipulating the imaged return current on a segmented ground plane by switches. This important insight allows for adaptable antenna performance that weakly depends on the number of RF switches or their loss. We experimentally validate that FPRFS antennas can achieve efficiencies comparable to traditionally implemented antenna counterparts. This permits the FPRFS to be effectively utilized as a productive antenna and impedance-matching network with real-time reconfigurability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091106 | PMC |
http://dx.doi.org/10.1038/s41467-024-48242-z | DOI Listing |
Sensors (Basel)
December 2024
CommSensLab-UPC, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain.
Interferometric radiometers operating at L-band, such as ESA's SMOS mission, enable crucial Earth observations providing high-resolution measurements of soil moisture, ocean salinity, and other geophysical parameters. However, the increasing electromagnetic spectrum utilization has led to significant Radio Frequency Interference (RFI) challenges, particularly critical given the sensors' fine temperature resolution requirements of less than 1 K. This work presents the hardware implementation of an advanced RFI detection and mitigation algorithm specifically designed for interferometric radiometers, targeting future L-band missions.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People's Republic of China.
A compact and fast radio-frequency (RF) source developed for Raman sideband cooling (RSBC) in trapped ion and cold atom experiments is presented. The source is based on direct digital synthesizer, advanced real-time infrastructure for quantum physics, and field programmable gate array. The source has a frequency switching speed of 40 ns and can output continuous μs-level time sequences for RSBC.
View Article and Find Full Text PDFNat Commun
May 2024
Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, 3010, Australia.
Antennas that can operate across multiple communication standards have remained a challenge. To address these limitations, we propose a Field-Programmable Radio Frequency Surface (FPRFS), which is based on manipulating current flow on its surface to achieve desirable RF characteristics. In this work, we demonstrate that substantial enhancements in radiation efficiency can be achieved while preserving the high reconfigurability of antenna structures implemented on the FPRFS.
View Article and Find Full Text PDFRev Sci Instrum
March 2024
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China.
Microwave radiometers, possessing all-day and all-weather operational capabilities, are extensively utilized in the exploration of planetary atmospheres and surfaces. The potential of the hyperspectral detection technology to enhance the precision and resolution of microwave radiometer detection has made it a crucial research focus. This paper introduces an intermediate frequency (IF) module for hyperspectral microwave radiometers.
View Article and Find Full Text PDFSensors (Basel)
February 2024
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Parc Mediterrani de la Tecnologia, Building B4, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain.
This paper presents the design, proof-of-concept implementation, and preliminary performance assessment of an affordable real-time High-Sensitivity (HS) Global Navigation Satellite System (GNSS) receiver. Specifically tailored to capture and track weak Galileo E1b/c signals, this receiver aims to support research endeavors focused on advancing GNSS signal processing algorithms, particularly in scenarios characterized by pronounced signal attenuation. Leveraging System-on-Chip Field-Programmable Gate Array (SoC-FPGA) technology, this design merges the adaptability of Software Defined Radio (SDR) concepts with the the robust hardware processing capabilities of FPGAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!