This study effectively addresses the rapid deactivation of manganese-based catalysts in humid environments during ozone decomposition by introducing iron-doped manganese oxide octahedral molecular sieve (Fe-OMS-2) catalysts supported on activated carbon (AC). By optimizing the doping ratio of Fe-OMS-2, the Fe-OMS-2/AC catalyst achieves nearly 100% ozone decomposition efficiency across a wide range of relative humidity levels (0 to 60%), even at elevated air flow rates of 800 L·g·h, outperforming standalone AC, Fe-OMS-2, or a simple mixture of OMS-2 and AC. The Fe-OMS-2/AC catalyst features a porous surface and a mesoporous structure, providing a substantial specific surface area that facilitates the uniform distribution of the Fe-OMS-2 active phase on the AC surface. The incorporation of Fe ions enhances electron transfer between valence state transitions of Mn, thereby improving the catalyst's efficiency in ozone decomposition. Additionally, the AC component protects catalytic sites and enhances the catalyst's humidity resistance. In conclusion, this research presents a novel strategy for developing highly efficient and cost-effective ozone decomposition catalysts that enhance dehumidification, significantly contributing to industrial ozone treatment technologies and advancing environmental protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33623-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!