A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning-Based Detect-Then-Track Pipeline for Treatment Outcome Assessments in Immunotherapy-Treated Liver Cancer. | LitMetric

Accurate treatment outcome assessment is crucial in clinical trials. However, due to the image-reading subjectivity, there exist discrepancies among different radiologists. The situation is common in liver cancer due to the complexity of abdominal scans and the heterogeneity of radiological imaging manifestations in liver subtypes. Therefore, we developed a deep learning-based detect-then-track pipeline that can automatically identify liver lesions from 3D CT scans then longitudinally track target lesions, thereby providing the evaluation of RECIST treatment outcomes in liver cancer. We constructed and validated the pipeline on 173 multi-national patients (344 venous-phase CT scans) consisting of a public dataset and two in-house cohorts of 28 centers. The proposed pipeline achieved a mean average precision of 0.806 and 0.726 of lesion detection on the validation and test sets. The model's diameter measurement reliability and consistency are significantly higher than that of clinicians (p = 1.6 × 10). The pipeline can make precise lesion tracking with accuracies of 85.7% and 90.8% then finally yield the RECIST accuracies of 82.1% and 81.4% on the validation and test sets. Our proposed pipeline can provide precise and convenient RECIST outcome assessments and has the potential to aid clinicians with more efficient therapeutic decisions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-024-01132-8DOI Listing

Publication Analysis

Top Keywords

liver cancer
12
deep learning-based
8
learning-based detect-then-track
8
detect-then-track pipeline
8
treatment outcome
8
outcome assessments
8
proposed pipeline
8
validation test
8
test sets
8
pipeline
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!