Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The innate immune system is an evolutionarily conserved pathogen recognition mechanism that serves as the first line of defense against tissue damage or pathogen invasion. Unlike the adaptive immunity that recruits T-cells and specific antibodies against antigens, innate immune cells express pathogen recognition receptors (PRRs) that can detect various pathogen-associated molecular patterns (PAMPs) released by invading pathogens. Microbial molecular patterns, such as lipopolysaccharide (LPS) from Gram-negative bacteria, trigger signaling cascades in the host that result in the production of pro-inflammatory cytokines. LPS stimulation produces a strong immune response and excessive LPS signaling leads to dysregulation of the immune response. However, dysregulated inflammatory response during wound healing often results in chronic non-healing wounds that are difficult to control. In this work, we present data demonstrating partial neutralization of anionic LPS molecules using cationic branched polyethylenimine (BPEI). The anionic sites on the LPS molecules from Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the lipid A moiety and BPEI binding create steric factors that hinder the binding of PRR signaling co-factors. This reduces the production of pro-inflammatory TNF-α cytokines. However, the anionic sites of Pseudomonas aeruginosa (P. aeruginosa) LPS are in the O-antigen region and subsequent BPEI binding slightly reduces TNF-α cytokine production. Fortunately, BPEI can reduce TNF-α cytokine expression in response to stimulation by intact P. aeruginosa bacterial cells and fungal zymosan PAMPs. Thus low-molecular weight (600 Da) BPEI may be able to counter dysregulated inflammation in chronic wounds and promote successful repair following tissue injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463166 | PMC |
http://dx.doi.org/10.1002/cmdc.202400011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!