Three-dimensional polymer phenylethnylcopper/nitrogen doped graphene aerogel electrode coupled with FeO NPs nanozyme: Toward sensitive and robust photoelectrochemical detection of glyphosate in agricultural matrix.

Anal Chim Acta

Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Published: June 2024

Background: Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed.

Results: A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with FeO NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking FeO NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity FeO NPs, the protocol achieved Gly detection in the range of 5 × 10 to 1 × 10 mol L. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil.

Significance: This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342647DOI Listing

Publication Analysis

Top Keywords

feo nps
16
three-dimensional polymer
8
graphene aerogel
8
electrode coupled
8
coupled feo
8
nps nanozyme
8
agricultural matrix
8
food environmental
8
facile sensitive
8
sensitive reliable
8

Similar Publications

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

Unveiling the crucial role of iron oxide transformation in simultaneous immobilization of nanoplastics and organic matter.

Sci Total Environ

December 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).

View Article and Find Full Text PDF

Background: Antimicrobial resistance (AMR) presents a serious threat to health, highlighting the urgent need for more effective antimicrobial agents with innovative mechanisms of action. Nanotechnology offers promising solutions by enabling the creation of nanoparticles (NPs) with antibacterial properties. This study aimed to explore the antibacterial, anti-biofilm, and anti-virulence effects of eco-friendly synthesized α-Fe₂O₃ nanoparticles (α-Fe₂O₃-NPs) against pathogenic bacteria.

View Article and Find Full Text PDF

Vacancy-Activated Surface Reconstruction of Perovskite Nanofibers for Efficient Lattice Oxygen Evolution.

ACS Appl Mater Interfaces

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.

Article Synopsis
  • The study focuses on enhancing the oxygen evolution reaction (OER) in perovskites by inducing surface reconstruction through trace Ce-doped LaCeNiFeO nanofibers (LCNF-NFs), which improves their catalytic activity.* -
  • High oxygen vacancies in the LCNF-NFs lower the reconstruction potential and increase electrolyte access, leading to significant generation of self-reconstructed electroactive Ni/FeO(OH) species on the surface.* -
  • The restructured LCNF-NFs demonstrated superior performance with a lower Tafel slope of 50.12 mV dec and a reduced overpotential of 342.3 mV, making them highly efficient compared to conventional electrocatalysts.*
View Article and Find Full Text PDF

Iron oxide nanoparticles (FeO-NPs) are widely used in scientific and technological fields. Environmental concerns have been raised about residual FeO-NPs levels as their toxicity and bioaccumulative potential are not well understood. Oreochromis niloticus were exposed to nanoparticles of γ-Fe2O3 and Fe3O4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!