Considering the limited literature and the difficulty of quantifying 1-μm micro-nanoplastics (1-μm MNP) in complex aqueous matrices such as wastewater and sludge, the removal rate of these very small particles in wastewater treatment plants (WWTP) represents a major challenge. In this study, coagulation-flocculation-sedimentation (CFS) with aluminum salts was investigated to evaluate the removal of 1-μm MNPs spiked in tap water, raw wastewater, pre-settled wastewater, and activated sludge. Quantification of 1-μm MNP was performed using the high-throughput flow cytometry (FCM) analysis which takes only a few minutes and produces results with high accuracy and reproducibly. The results indicated that the 1-μm MNPs were highly stable in pure water and unable to settle rapidly. In raw wastewater, sedimentation without coagulants removed less than 4% of 1-μm MNP. Conversely, CFS treatment showed a significant improvement in the removal of 1-μm MNP from wastewater. At dosages of 0.3-3 mg Al/L, the removal of MNPs in wastewater reached 30% and no flocs were observed, while floc formation was visible with increased dosages of 3-12 mg Al/L, obtaining MNP removal greater than 90%. CFS in activated sludge with a solids content of 5800 mg MLSS/L registered the highest removal efficiency (95-99%) even for dosages of 0.3-60 mg Al/L and pH dropping to 5. However, activated sludge showed extremely high removal efficiency of MNPs (97.3 ± 0.9%) even without coagulants. The large, dense flocs that constitute activated sludge appear particularly efficient in capturing 1-μm MNPs during the sedimentation process even in the absence of coagulants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142328 | DOI Listing |
Mar Pollut Bull
January 2025
Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW75BD, UK.
Microplastic pollution poses a significant threat to coastal ecosystems worldwide. Despite its widespread occurrence, knowledge on the prevalence and fate of microplastics across food webs is limited. To bridge this gap, we conducted an extensive study on microplastic contamination in mudflats, mangroves, and sand beaches being key habitats for wintering shorebirds on the west coast of India.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China. Electronic address:
Anaerobic ammonium oxidation (Anammox) has garnered significant attention due to its ability to eliminate the need for aeration and supplementary carbon sources in biological nitrogen removal process, relying on the capacity of anaerobic ammonium oxidizing bacteria (AnAOB) to directly convert ammonium and nitrite nitrogen into nitrogen gas. This review consolidates the latest advancements in AnAOB research, outlining the mechanisms and enzymatic processes of Anammox, and summarizing the molecular biological techniques used for studying AnAOB, such as 16s rRNA sequencing, qPCR, and metagenomic sequencing. Additionally, it also overviews the currently identified AnAOB species and their distinct metabolic traits, while consolidating strategies to improve their performance.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Aquatic Toxicology Laboratory, St Cloud State University, Minnesota, USA.
Treated municipal wastewater effluent is an important pathway for Contaminants of Emerging Concern (CEC) to enter aquatic ecosystems. As the aging wastewater infrastructure in many industrialized countries requires upgrades or replacement, assessing new treatment technologies in the context of CEC effects may provide additional support for science-based resource management. Here, we used three lines of evidence, analytical chemistry, fish exposure experiments, and fish and water microbiome analysis, to assess the effectiveness of membrane bioreactor treatment (MBR) to replace traditional activated sludge treatment.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!