A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

UAV-based modelling of vegetation recovery under extreme habitat stresses in the water level fluctuation zone of the Three Gorges Reservoir, China. | LitMetric

Impoundment of the Three Gorges Reservoir on the upper Yangtze River has remarkably altered hydrological regime within the dammed reaches, triggering structural and functional changes of the riparian ecosystem. Up to date, how vegetation recovers in response to compound habitat stresses in the water level fluctuation zone remains inexplicitly understood. In this study, plant above-ground biomass (AGB) in a selected water level fluctuation zone was quantified to depict its spatial and temporal pattern using unmanned aerial vehicle (UAV)-derived multispectral images and screened empirical models. The contributions of multiple habitat stressors in governing vegetation recovery dynamics along the environmental gradient were further explored. Screened random forest models indicated relatively higher accuracy in AGB estimation, with R being 0.68, 0.79 and 0.62 during the sprouting, growth, and mature periods, respectively. AGB displayed a significant linear increasing trend along the elevational gradient during the sprouting and early growth period, while it showed an inverted U-shaped pattern during late growth and mature period. Flooding duration, magnitude and timing were found to exert greater negative effects on plant sprouting and biomass accumulation and acted as decisive factors in governing the elevation-dependent pattern of AGB. Localized spatial variations in AGB were modulated by other stressors such as sediment burial, soil erosion, soil moisture and nutrient content. Occurrence of episodic summer floods and vegetation distribution were responsible for an inverted U-shaped pattern of AGB during the late growth and mature period. Generally, AGB reached its peak in August, thereafter an obvious decline by an unprecedent dry-hot climatic event. The water level fluctuations with cumulative flooding effects exerted substantial control on AGB temporal dynamics, while climatic condition played a secondary role. Herein, further restorative efforts need to be directed to screening suitable species, maintaining favorable soil condition, and improving vegetation pattern to balance the many trade-offs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173185DOI Listing

Publication Analysis

Top Keywords

water level
16
level fluctuation
12
fluctuation zone
12
growth mature
12
vegetation recovery
8
habitat stresses
8
stresses water
8
three gorges
8
gorges reservoir
8
agb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!