Ionic liquid-assisted pretreatment of lignocellulosic biomass using purified Streptomyces MS2A cellulase for bioethanol production.

Int J Biol Macromol

Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. Electronic address:

Published: June 2024

In recent years, the process of producing bioethanol from lignocellulosic biomass through biorefining has become increasingly important. However, to obtain a high yield of ethanol, the complex structures in the feedstock must be broken down into simple sugars. A cost-effective and innovative method for achieving this is ionic liquid pre-treatment, which is widely used to efficiently hydrolyze the lignocellulosic material. The study aims to produce a significant profusion of bioethanol via catalytic hydrolysis of ionic liquid-treated lignocellulose biomass. The current study reports the purification of Streptomyces sp. MS2A cellulase via ultrafiltration and gel permeation chromatography. The kinetic parameters and the biochemical nature of the purified cellulase were analyzed for the effective breakdown of the EMIM[OAC] treated lignocellulose chain. The two-step cellulase purification resulted in 6.28 and 12.44 purification folds. The purified cellulase shows a Km value of 0.82 ± 0.21 mM, and a Vmax value of 85.59 ± 8.87 μmol min mg with the catalytic efficiency of 1.027 S. The thermodynamic parameters like ΔH, ΔS, and ΔG of the system were studied along with the thermal deactivation kinetics of cellulase. The optimal temperature and pH of the purified cellulase enzyme for hydrolysis was found to be 40 °C and 7. The rice husk and wheat husk used in this study were pretreated with the EMIM [OAC] ionic liquid and the change in the structure of lignocellulosic biomass was observed via HRSEM. The ionic liquid treated biomass showed the highest catalytic hydrolysis yield of 106.66 ± 0.19 mol/ml on the third day. The obtained glucose was fermented with Saccharomyces cerevisiae to yield 23.43 g of ethanol/l of glucose from the rice husk (RH) and 24.28 g of ethanol/l of glucose from the wheat husk (WH).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132149DOI Listing

Publication Analysis

Top Keywords

lignocellulosic biomass
12
ionic liquid
12
purified cellulase
12
streptomyces ms2a
8
ms2a cellulase
8
catalytic hydrolysis
8
rice husk
8
wheat husk
8
ethanol/l glucose
8
cellulase
7

Similar Publications

Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).

View Article and Find Full Text PDF

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.

View Article and Find Full Text PDF

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

Fabrication of lignin nanoparticles with adjustable size, antioxidant, antibacterial, and hydrophobic properties by a two-step fractionation.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China. Electronic address:

Article Synopsis
  • Lignin nanoparticles (LNPs) are being recognized for their eco-friendly properties and potential in sustainable materials.
  • A new two-step fractionation technique has created four lignin fractions (F1, F2, F3, and F4) with optimal characteristics for LNPs production, achieving a high recovery rate of 88.7% from alkali lignin.
  • The study highlights how the size and structural properties of LNPs can be controlled for better antibacterial and antioxidant performance, particularly favoring a higher syringyl/guaiacyl ratio for smaller nanoparticles.
View Article and Find Full Text PDF

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!