Anisotropic optical property of ferroelectric BiOX(X = S,Se,Te) monolayer and strain engineering.

J Phys Condens Matter

Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, and School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.

Published: May 2024

Based on the first-principles calculations, ferroelectricBi2O2X(X=S,Se,Te)monolayers with unequivalent in-plane lattice constants are confirmed to be the ground state, which is consistent with the experiment result (Ghosh20195703-09), and the anisotropic optical property is firstly investigated. We find that the polarizations ofBi2O2Xmonolayers points along the direction of-axis, andBi2O2Temonolayer process the largest polarization. Furthermore, both the biaxial and uniaxial strains are favor for the enhancement of polarization ofBi2O2Xmonolayers. It should be mentioned that the type of band gap will convert from indirect to direct forBi2O2Temonolayer when the-axial tensile strain is larger than 2%. At last, the optical absorption coefficient forBi2O2Xmonolayers are calculated, and we obtain thatBi2O2Temonolayer has the strongest optical absorption within the range of visible light, the anisotropy and possible strain engineering to improve the optical absorption are discussed in detail. Our findings are significant in fields of optoelectronics and photovoltaics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad4addDOI Listing

Publication Analysis

Top Keywords

optical absorption
12
anisotropic optical
8
optical property
8
strain engineering
8
property ferroelectric
4
ferroelectric bioxx
4
bioxx ssete
4
ssete monolayer
4
monolayer strain
4
engineering based
4

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

CRISPR-Cas12a-Mediated Growth of Gold Nanoparticles for DNA Detection in Agarose Gel.

ACS Sens

January 2025

Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.

The rapid, simple, and sensitive detection of nucleic acid biomarkers plays a significant role in clinical diagnosis. Herein, we develop a label-free and point-of-care approach for isothermal DNA detection through the trans-cleavage activity of CRISPR-Cas12 and the growth of gold nanomaterials in agarose gel. The presence of the target can activate CRISPR-Cas12a to cleave single-stranded DNA, thus modulating the length and number of DNA sequences that mediate the growth of gold nanoparticles (AuNPs) or gold nanorods (AuNRs).

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!