At interfaces connecting two superconductors (SCs) separated by a metallic layer, an electric current is induced when there is a disparity in the phases of the two superconductors. We elucidate this phenomenon based on the weights of the Andreev bound states associated with the states carrying currents in forward and reverse directions. Typically, current phase relation (CPR) in Josephson junctions is an odd function. When time reversal and inversion symmetries are broken at the junction, CPR ceases to be an odd function and the system may exhibit Josephson diode effect. This phenomenon has been studied in spin orbit coupled systems under an external Zeeman field wherein the magnetochiral anisotropy is responsible for the Josephson diode effect. Recently introduced the band asymmetric metal (BAM) model presents a novel avenue, featuring an asymmetric band structure. We investigate DC Josephson effect in SC-BAM-SC junctions and find that band asymmetry can lead to Josephson diode effect and anomalous Josephson effect. We explain the mechanism behind these effects based on interference of plane wave modes within the Bogoliubov de-Genne formalism. We calculate diode effect coefficient for different values of the parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad4aad | DOI Listing |
ACS Nano
January 2025
Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.
The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.
View Article and Find Full Text PDFCommun Phys
October 2024
Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany.
Superconducting diode effects have recently attracted much attention for their potential applications in superconducting logic circuits. Several pathways have been proposed to give rise to non-reciprocal critical currents in various superconductors and Josephson junctions. In this work, we establish the presence of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe facilitated by its helical spin-momentum locking and distinguish it from extrinsic geometric effects.
View Article and Find Full Text PDFACS Nano
November 2024
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
Nat Commun
October 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!