Several dwarf and semi-dwarf genes have been identified in barley. However, only a limited number have been effectively utilized in breeding programs to cultivate lodging resistant varieties. This is due to the common association of dwarf and semi-dwarf traits with negative effects on malt quality. In this study, we employed gene editing to generate three new haplotypes of sdw1/denso candidate gene gibberellin (GA) 20-oxidase2 (GA20ox2). These haplotypes induced a dwarfing phenotype and enhancing yield potential, and promoting seed dormancy, thereby reducing pre-harvest sprouting. Moreover, β-amylase activity in the grains of the mutant lines was significantly increased, which is beneficial for malt quality. The haplotype analysis revealed significant genetic divergence of this gene during barley domestication and selection. A novel allele (sdw1.ZU9), containing a 96-bp fragment in the promoter region of HvGA20ox2, was discovered and primarily observed in East Asian and Russian barley varieties. The 96-bp fragment was associated with lower gene expression, leading to lower plant height but higher germination rate. In conclusion, HvGA20ox2 can be potentially used to develop semi-dwarf barley cultivars with high yield and improved malt quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16798 | DOI Listing |
Theor Appl Genet
January 2025
Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
Genetic variation for malting quality as well as metabolomic and near-infrared features was identified. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy of predicted breeding values. Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectroscopy technologies for enhancing genetic evaluation in breeding programs.
View Article and Find Full Text PDFMycotoxin Res
December 2024
Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins.
View Article and Find Full Text PDFMolecules
November 2024
Centre for Innovation and Research on Prohealthy and Safe Food, University of Agriculture in Krakow, Balicka Street 104, 30-149 Krakow, Poland.
Changing trends in the brewing market show that breweries want to attract consumers with new products. New flavours and aromas in beer can be achieved by using various additives. However, non- yeast strains make it possible to produce beer with an original sensory profile but according to a traditional recipe (without additives).
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China. Electronic address:
Ester-producing strains are of great importance for enhancing the quality and flavor profiles of alcoholic beverages. However, traditional methods for screening ester-producing strains are labor-intensive and time-consuming, significantly impeding the development of alcoholic beverages industry. In this study, we selected five brands of Jiuqu to cultivate within different media, results showed that XB (Jiuqu) incubated with malt extract medium possessed the highest ester-producing capability, with the identification of 27 esters at the concentration of 31.
View Article and Find Full Text PDFFood Res Int
November 2024
Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!