Consecutive training on two movement sequences often leads to retroactive interference-obstructing memory for the initially trained sequence but not for the second. However, in the context of hippocampal-system dependent memories, a poor learning experience, memory for which would soon decay, can be enhanced if temporally paired with a "strong" memory triggering experience. The synaptic tagging and capture hypothesis explains this paradoxical enhancement by suggesting that only strong experiences generate cellular resources necessary for synaptic remodeling. However, synapses engaged in a "weak" learning experience can capture and utilize plasticity-related resources generated for a subsequent strong learning experience. Here, we tested whether such a "paradoxical" outcome would result in the context of motor (procedural) memory, if two movement sequences are unequally trained, consecutively. We show, in young adults (n = 100), that limited practice on a novel sequence of finger-to-thumb opposition movements led to different long-term outcomes, depending on whether and when (5 min, 5 hr) it was followed by extensive training on a different sequence. Five-minute pairing only resulted in overnight gains for the limited-trained sequence that were well-retained a week later; the overnight gains for the extensively trained sequence were compromised. Thus, consecutive training on different motor tasks can result in mnemonic interactions other than interference. We propose that the newly discovered mnemonic interaction provides the first-tier behavioral evidence in support of the possible applicability of notions stemming from the synaptic tagging and capture hypothesis in relation to human motor memory generation, specifically in relation to the practice-dependent consolidation of novel explicitly instructed movement sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_02186 | DOI Listing |
The chromatin of the centromere provides the assembly site for the mitotic kinetochore that couples microtubule attachment and force production to chromosome movement in mitosis. The chromatin of the centromere is specified by nucleosomes containing the histone H3 variant CENP-A. The constitutive centromeric-associated network (CCAN) and kinetochore are assembled on CENP-A chromatin to enable chromosome separation.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Background: Mitochondrial function influences Parkinson's disease (PD) through the accumulation of pathogenic alpha-synuclein, oxidative stress, impaired autophagy, and neuroinflammation. The mitochondrial DNA copy number (mtDNA-CN), representing the number of mitochondrial DNA copies within a cell, serves as an easily assessable proxy for mitochondrial function.
Objective: This study aimed to assess the diagnostic and prognostic capabilities of mtDNA-CN in PD.
Biol Sport
January 2025
Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.
Despite the development of various motor learning models over many decades, the question of which model is most effective under which conditions to optimize the acquisition of skills remains a heated and recurring debate. This is particularly important in connection with learning sports movements with a high strength component. This study aims to examine the acute effects of various motor learning models on technical efficiency and force production during the Olympic snatch movement.
View Article and Find Full Text PDFSci Rep
January 2025
Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!