Pyramid-based deformation decomposition is a promising registration framework, which gradually decomposes the deformation field into multi-resolution subfields for precise registration. However, most pyramid-based methods directly produce one subfield per resolution level, which does not fully depict the spatial deformation. In this paper, we propose a novel registration model, called GroupMorph. Different from typical pyramid-based methods, we adopt the grouping-combination strategy to predict deformation field at each resolution. Specifically, we perform group-wise correlation calculation to measure the similarities of grouped features. After that, n groups of deformation subfields with different receptive fields are predicted in parallel. By composing these subfields, a deformation field with multi-receptive field ranges is formed, which can effectively identify both large and small deformations. Meanwhile, a contextual fusion module is designed to fuse the contextual features and provide the inter-group information for the field estimator of the next level. By leveraging the inter-group correspondence, the synergy among deformation subfields is enhanced. Extensive experiments on four public datasets demonstrate the effectiveness of GroupMorph. Code is available at https://github.com/TVayne/GroupMorph.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3400603DOI Listing

Publication Analysis

Top Keywords

deformation field
12
contextual fusion
8
pyramid-based methods
8
deformation subfields
8
deformation
7
field
5
groupmorph medical
4
medical image
4
registration
4
image registration
4

Similar Publications

Probing the physical hallmarks of cancer.

Nat Methods

January 2025

Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks.

View Article and Find Full Text PDF

GMmorph: dynamic spatial matching registration model for 3D medical image based on gated Mamba.

Phys Med Biol

January 2025

School of Software Engineering, Xi'an Jiaotong University, Xi 'an Jiaotong University Innovation Port, Xi 'an, Shaanxi Province, Xi'an, Shaanxi, 710049, CHINA.

Deformable registration aims to achieve nonlinear alignment of image space by estimating a dense displacement field. It is commonly used as a preprocessing step in clinical and image analysis applications, such as surgical planning, diagnostic assistance, and surgical navigation. We aim to overcome these challenges: Deep learning-based registration methods often struggle with complex displacements and lack effective interaction between global and local feature information.

View Article and Find Full Text PDF

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Risk factors of the appearance of anencephaly in Tunisia.

Tunis Med

January 2025

Department of embryo-fetopathology, La Rabta Maternity and Neonatology Center, El Manar II University, 1007 Tunis, Tunisia.

Introduction: Anencephaly is a serious developmental defect of the central nervous system in which the brain and cranial vault are grossly malformed. The cerebrum and cerebellum are reduced or absent, but the hindbrain is present. Anencephaly is a part of the neural tube defect spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!