Sex Pheromone of the Saturniid Moth Hemileuca nevadensis from Southern California.

J Chem Ecol

Department of Entomology, University of California, Riverside, CA, 92521, USA.

Published: August 2024

The major and possibly only component of the sex attractant pheromone of the moth Hemileuca nevadensis (Lepidoptera: Saturniidae) from southern California was determined to be (E10,Z12)-hexadecadienal (E10,Z12-16:Ald). Detectable quantities of the analogs (E10,Z12)-hexadecadien-1-yl acetate (E10,Z12-16:Ac) and (E10,Z12)-hexadecadien-1-ol (E10,Z12-16:OH) were also present in solvent extracts of sex pheromone glands, and stimulated male antennae in coupled gas chromatography-electroantennogram detector (GC-EAD) assays. GC-EAD traces from solid phase microextraction (SPME) wipe samples of sex pheromone glands of calling females confirmed the presence of E10,Z12-16:Ald and traces of E10,Z12-16:OH on the gland surface, but E10,Z12-16:Ac was not detected. Despite evidence for the presence of all three compounds in extracts, behavioral responses to synthetic compounds in the field suggested that only E10,Z12-16:Ald is required for optimal attraction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-024-01506-wDOI Listing

Publication Analysis

Top Keywords

sex pheromone
12
moth hemileuca
8
hemileuca nevadensis
8
southern california
8
pheromone glands
8
sex
4
pheromone saturniid
4
saturniid moth
4
nevadensis southern
4
california major
4

Similar Publications

Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.

View Article and Find Full Text PDF

The identification of sex pheromones in native New Zealand moths has been limited, largely due to their minimal pest impact on agricultural ecosystems. The kōwhai moth, Uresiphita polygonalis maorialis, a native crambid, is known for its herbivory on Sophora spp. and Lupinus arboreus leaves.

View Article and Find Full Text PDF

Alkenyl pheromones: Raman spectroscopic analysis, DFT modeling, and machine learning for stereoisomerism evaluation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania. Electronic address:

Alkenyl pheromones are a class of insect sex pheromones that are characterized by the presence of one or more double bonds, which can be either in the E(trans) or Z(cis) configuration. This structural variation is essential in mating, as it influences reproductive behavior and provides a potential method for insect control. As a base for rapid and in-situ screening of synthetic pheromones or pheromone-based products, this study explores the potential of Raman spectroscopy to differentiate between the two geometrical isomers, E(trans) and Z(cis), of the alkenyl pheromones.

View Article and Find Full Text PDF

Many animals display physiological and behavioral activities limited to specific times of the day. Certain insects exhibit clear daily rhythms in their mating activities that are regulated by an internal biological clock. However, the specific genetic mechanisms underlying this regulation remain largely unexplored.

View Article and Find Full Text PDF

Background: Bursaphelenchus xylophilus is considered a quarantine plant nematode species, that causes major damage to pine ecosystems globally. However, there are few reports on the identification and function of the sex pheromone receptors involved in mating. The function of Bxy-npr-21 as a potential sex pheromone receptor gene was verified from molecules to behaviors in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!