Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative biofilm-forming opportunistic human pathogen whose vital mechanism is biofilm formation for better survival. PelA and PelB proteins of the PEL operon are essential for bacterial-synthesized pellicle polysaccharide (PEL), which is a vital structural component of the biofilm. It helps in adherence of biofilm on the surface and maintenance of cell-to-cell interactions and with other matrix components. Here, in-silico molecular docking and simulation studies were performed against PelA and PelB using ten natural bioactive compounds, individually [podocarpic acids, ferruginol, scopadulcic acid B, pisiferic acid, metachromin A, Cytarabine (cytosine arabinoside; Ara-C), ursolic acid, oleanolic acid, maslinic acid, and betulinic acid], those have already been established as anti-infectious compounds. The results obtained from AutoDock and Glide-Schordinger stated that a marine-derived cytosine arabinoside (Ara-C) among the ten compounds binds active sites of PelA and PelB, exhibiting strong binding affinity [Trp224 (hydrogen), Ser219 (polar), Val234 (hydrophobic) for PelA; Leu365 and Glu389 (hydrogen), Gln366 (polar) for PelB] with high negative binding energy - 5.518 kcal/mol and - 6.056 kcal/mol, respectively. The molecular dynamic and simulation studies for 100 ns showed the MMGBSA binding energy scores are - 16.4 kcal/mol (Ara-C with PelA), and - 22.25 kcal/mol (Ara-C with PelB). Further, ADME/T studies indicate the IC values of AraC are 6.10 mM for PelA and 18.78 mM for PelB, which is a comparatively very low dose. The zero violation of Lipinski's Rule of Five further established that Ara-C is a good candidate for drug development. Thus, Ara-C could be considered a potent anti-biofilm compound against PEL operon-dependent biofilm formation of P. aeruginosa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-024-01169-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!