Metal-ligand cross-link strategy engineered iron-doped dopamine-based superstructure as peroxidase-like nanozymes for detection of glucose.

Anal Bioanal Chem

The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330088, People's Republic of China.

Published: November 2024

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and HO, the K is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 μM, and the limit of detection is 17.5 μM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of OH and O, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05317-6DOI Listing

Publication Analysis

Top Keywords

detection glucose
12
superstructure nanozymes
12
sensitive detection
8
nanozymes
7
detection
5
glucose
5
metal-ligand cross-link
4
cross-link strategy
4
strategy engineered
4
engineered iron-doped
4

Similar Publications

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

A Hierarchical Core-Shell Structure of NiO@CuO-CF for Effective Non-Enzymatic Electrochemical Glucose Detection.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.

Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)@Cu(OH)-CF) was fabricated and derived from NiO@CuO-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!