Hybrid materials that combine organic polymers and biomacromolecules offer unique opportunities for precisely controlling 3D chemical environments. Although biological or organic templates have been separately used to control the growth of inorganic nanoclusters, hybrid structures represent a relatively unexplored approach to tailoring nanocluster properties. Here, we demonstrate that a molecularly defined lysozyme-polymer resin material acts as a structural scaffold for the synthesis of copper nanoclusters (CuNCs) with well controlled size distributions. The resulting CuNCs have significantly enhanced fluorescence compared with syntheses based on polymeric or biological templates alone. The synergistic approach described here is appealing for the synthesis of biocompatible fluorescent labels with improved photostability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.4c00058DOI Listing

Publication Analysis

Top Keywords

synthesis copper
8
copper nanoclusters
8
nanoclusters hybrid
8
enhanced fluorescence
8
templated synthesis
4
hybrid lysozyme-polymer
4
lysozyme-polymer material
4
material enhanced
4
fluorescence hybrid
4
hybrid materials
4

Similar Publications

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Introduction: Copper is an essential trace element crucial for enzyme synthesis and metabolism. Adequate copper levels are beneficial for maintaining the normal immune function of the spleen. Copper deficiency disrupts the metabolic processes within the spleen and impairs its immune function.

View Article and Find Full Text PDF

Nutritional Dermatology: Optimizing Dietary Choices for Skin Health.

Nutrients

December 2024

Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA.

Background/objectives: Youthful, smooth skin is highly desired in modern society. Individuals invest in cosmetics, plastic surgeons, and dermatologists in pursuit of perfect skin. However, many do not seek out dietary changes to improve skin health.

View Article and Find Full Text PDF

Proteomic Profile of in Response to Heavy Metal Pollution in Lakes of Northern Patagonia.

Int J Mol Sci

January 2025

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.

Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).

View Article and Find Full Text PDF

Metal Ion Supplementation to Boost Melanin Production by .

Int J Mol Sci

January 2025

Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Monte sant'Angelo Campus, Via Cintia 4, 80126 Naples, Italy.

As Streptomycetes might produce melanin to survive in stressful environmental conditions, like under metal exposure, supplementing metal ions to the growth medium could be a wise strategy for boosting the production of the pigment. The aim of this study was to test, for the first time, the possibility of boosting DSM40314 melanin biosynthesis by adding to the growth medium singularly or, at the same time, different concentrations (1.0, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!