Background: In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA).

Methods: DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting.

Results: Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT.

Conclusions: Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2024.04.068DOI Listing

Publication Analysis

Top Keywords

stromal cells
16
neuronally-induced dpscs
12
dpscs
10
uninduced neuronally-induced
8
dental pulp
8
pulp stromal
8
parkinson's disease
8
mesenchymal stromal
8
neuronal markers
8
locomotor behavior
8

Similar Publications

Objective: Gastrointestinal stromal tumor (GIST) is the most common type of mesenchymal tumor accounting for 2.2% of all malignant gastric tumors. Mesenchymal stem cells (MSCs) play crucial roles in gastric carcinogenesis.

View Article and Find Full Text PDF

An omics-based tumor microenvironment approach and its prospects.

Rep Pract Oncol Radiother

December 2024

Department of Biosciences Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, India.

Multi-omics approaches are revolutionizing cancer research and treatment by integrating single-modality omics methods, such as the transcriptome, genome, epigenome, epi-transcriptome, proteome, metabolome, and developing omics (single-cell omics). These technologies enable a deeper understanding of cancer and provide personalized treatment strategies. However, challenges such as standardization and appropriate methods for funneling complex information into clinical consequences remain.

View Article and Find Full Text PDF

Pdgfrα stromal cells, a key regulator for tissue homeostasis and dysfunction in distinct organs.

Genes Dis

March 2025

Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.

Pdgfrα stromal cells are a group of cells specifically expressing Pdgfrα, which may be mentioned with distinct names in different tissues. Importantly, the findings from numerous studies suggest that these cells share exactly similar biomarkers and properties, show complex functions in regulating the microenvironment, and are critical to tissue regeneration, repair, and degeneration. Comparing the similarities and differences between distinct tissue-resident Pdgfrα stromal cells is helpful for us to more comprehensively and deeply understand the behaviors of these cells and to explore some common regulating mechanisms and therapeutical targets.

View Article and Find Full Text PDF

Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells.

iScience

December 2024

Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.

Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction.

View Article and Find Full Text PDF

C5aR1-positive adipocytes mediate non-shivering thermogenesis in neonatal mice.

iScience

December 2024

Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Brown adipose tissue (BAT) plays an important role in maintaining body temperature in newborn mammals; however, its mechanisms remain poorly understood. Here, we report the identification of a special population of brown adipose tissue-derived stromal cells (ASCs) in neonatal mice that highly express CD45 and can be differentiated into adipocytes with lower thermogenic ability. These CD45 adipocytes also characteristically contained complement C5a receptor 1(C5aR1) on the cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!